These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 7391699)

  • 1. Transition from polar to duplicate patterns.
    Erneux T; Hiernaux J
    J Math Biol; 1980 May; 9(3):193-211. PubMed ID: 7391699
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Some analytical results about a simple reaction-diffusion system for morphogenesis.
    Rothe F
    J Math Biol; 1979 May; 7(4):375-84. PubMed ID: 469415
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatial patterns for an interaction-diffusion equation in morphogenesis.
    Mimura MA; Nishiura Y
    J Math Biol; 1979 Apr; 7(3):243-63. PubMed ID: 469412
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatial pattern formation in reaction-diffusion models: a computational approach.
    Hao W; Xue C
    J Math Biol; 2020 Jan; 80(1-2):521-543. PubMed ID: 31907596
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Asymmetric growth of models of avascular solid tumours: exploiting symmetries.
    Byrne H; Matthews P
    IMA J Math Appl Med Biol; 2002 Mar; 19(1):1-29. PubMed ID: 12408222
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A singular dispersion relation arising in a caricature of a model for morphogenesis.
    Britton NF
    J Math Biol; 1988; 26(4):387-403. PubMed ID: 3199041
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bifurcations of nonlinear reaction-diffusion systems in oblate spheroids.
    Hunding A
    J Math Biol; 1984; 19(3):249-63. PubMed ID: 6470580
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Turing-Hopf Bifurcation Scenario for Pattern Formation on Growing Domains.
    Castillo JA; Sánchez-Garduño F; Padilla P
    Bull Math Biol; 2016 Jul; 78(7):1410-49. PubMed ID: 27412157
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Morphogen-directed cell fate boundaries: slow passage through bifurcation and the role of folded saddles.
    Wedgwood KCA; Ashwin P
    J Theor Biol; 2022 Sep; 549():111220. PubMed ID: 35839857
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formation of a regular dissipative structure: a bifurcation and non-linear analysis.
    Chattopadhyay J; Tapaswi PK; Mukherjee D
    Biosystems; 1992; 26(4):211-22. PubMed ID: 1627732
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bifurcation diagrams in estimated parameter space using a pruned extreme learning machine.
    Itoh Y; Adachi M
    Phys Rev E; 2018 Jul; 98(1-1):013301. PubMed ID: 30110849
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reconstructing bifurcation diagrams only from time-series data generated by electronic circuits in discrete-time dynamical systems.
    Itoh Y; Uenohara S; Adachi M; Morie T; Aihara K
    Chaos; 2020 Jan; 30(1):013128. PubMed ID: 32013489
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Existence of traveling wave solutions in a diffusive predator-prey model.
    Huang J; Lu G; Ruan S
    J Math Biol; 2003 Feb; 46(2):132-52. PubMed ID: 12567231
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonlinear competition between asters and stripes in filament-motor systems.
    Ziebert F; Zimmermann W
    Eur Phys J E Soft Matter; 2005 Sep; 18(1):41-54. PubMed ID: 16211334
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic behavior of a neural network model of locomotor control in the lamprey.
    Jung R; Kiemel T; Cohen AH
    J Neurophysiol; 1996 Mar; 75(3):1074-86. PubMed ID: 8867119
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-similar solutions to a density-dependent reaction-diffusion model.
    Ngamsaad W; Khompurngson K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 2):066120. PubMed ID: 23005175
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards nonlinear selection of reaction-diffusion patterns in presence of advection: a spatial dynamics approach.
    Yochelis A; Sheintuch M
    Phys Chem Chem Phys; 2009 Oct; 11(40):9210-23. PubMed ID: 19812842
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pattern regulation and regeneration.
    French V
    Philos Trans R Soc Lond B Biol Sci; 1981 Oct; 295(1078):601-17. PubMed ID: 6117914
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Scale-invariance in reaction-diffusion models of spatial pattern formation.
    Othmer HG; Pate E
    Proc Natl Acad Sci U S A; 1980 Jul; 77(7):4180-4. PubMed ID: 6933464
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Snakes and ghosts in a parity-time-symmetric chain of dimers.
    Susanto H; Kusdiantara R; Li N; Kirikchi OB; Adzkiya D; Putri ERM; Asfihani T
    Phys Rev E; 2018 Jun; 97(6-1):062204. PubMed ID: 30011512
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.