These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

72 related articles for article (PubMed ID: 7391832)

  • 1. Two-dimensional analysis of autophosphorylated chick brain synaptic subfractions.
    Breithaupt TB; Babitch JA; Hodges DH
    J Neurobiol; 1980 May; 11(3):303-10. PubMed ID: 7391832
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Autophosphorylation of chick brain synaptic polypeptides. Phosphorylation of proteins during incubation of intact synaptosomes with 32PO4.
    Breithaupt TB; Babitch JA
    J Neurobiol; 1979 Mar; 10(2):169-77. PubMed ID: 512656
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calcium-dependent serine phosphorylation of synaptophysin.
    Rubenstein JL; Greengard P; Czernik AJ
    Synapse; 1993 Feb; 13(2):161-72. PubMed ID: 8383357
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification and comparison of protein I in chick and rat forebrain.
    Sorensen RG; Babitch JA
    J Neurochem; 1984 Mar; 42(3):705-10. PubMed ID: 6319604
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extraction of major acidic Ca2+ dependent phosphoproteins from synaptic membranes.
    Perrone-Bizzozero NI; Weiner D; Hauser G; Benowitz LI
    J Neurosci Res; 1988 Jul; 20(3):346-50. PubMed ID: 3225871
    [TBL] [Abstract][Full Text] [Related]  

  • 6. State-of-the-art in phosphoproteomics.
    Reinders J; Sickmann A
    Proteomics; 2005 Nov; 5(16):4052-61. PubMed ID: 16196093
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nerve growth cones isolated from fetal rat brain. III. Calcium-dependent protein phosphorylation.
    Katz F; Ellis L; Pfenninger KH
    J Neurosci; 1985 Jun; 5(6):1402-11. PubMed ID: 4009238
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of synaptic plasma membrane and synaptic vesicle polypeptides by two-dimensional polyacrylamide gel electrophoresis.
    Babitch JA; Benavides LA
    Neuroscience; 1979; 4(5):603-13. PubMed ID: 450252
    [No Abstract]   [Full Text] [Related]  

  • 9. Enhancement of the efficiency of phosphoproteomic identification by removing phosphates after phosphopeptide enrichment.
    Ishihama Y; Wei FY; Aoshima K; Sato T; Kuromitsu J; Oda Y
    J Proteome Res; 2007 Mar; 6(3):1139-44. PubMed ID: 17330947
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Comparative study of phosphopeptides in various animal tissues].
    Ledig M; Mandel P
    Biochimie; 1975; 57(11-12):1377-84. PubMed ID: 1222133
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adenosine 3',5'-cyclic monophosphate/vanadate-sensitive phosphorylation of DARPP-32- and inhibitor-1-immunoreactive proteins.
    Edgar MA; Dokas LA
    Recept Signal Transduct; 1997; 7(1):13-28. PubMed ID: 9285528
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [A new approach to protein phosphorylation modification analysis for neuron].
    He T; Li H; Li RH; Duan CG; Gan L; Li J; Song J
    Sichuan Da Xue Xue Bao Yi Xue Ban; 2004 Sep; 35(5):715-8. PubMed ID: 15460428
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Specificity of immobilized metal affinity-based IMAC/C18 tip enrichment of phosphopeptides for protein phosphorylation analysis.
    Kokubu M; Ishihama Y; Sato T; Nagasu T; Oda Y
    Anal Chem; 2005 Aug; 77(16):5144-54. PubMed ID: 16097752
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Topography of glycoproteins in the chick synaptosomal plasma membrane.
    Chiu TC; Babitch JA
    Biochim Biophys Acta; 1978 Jun; 510(1):112-23. PubMed ID: 667029
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proteomic analysis of synaptosomes using isotope-coded affinity tags and mass spectrometry.
    Schrimpf SP; Meskenaite V; Brunner E; Rutishauser D; Walther P; Eng J; Aebersold R; Sonderegger P
    Proteomics; 2005 Jul; 5(10):2531-41. PubMed ID: 15984043
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphopeptide quantitation using amine-reactive isobaric tagging reagents and tandem mass spectrometry: application to proteins isolated by gel electrophoresis.
    Sachon E; Mohammed S; Bache N; Jensen ON
    Rapid Commun Mass Spectrom; 2006; 20(7):1127-34. PubMed ID: 16521170
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A two-dimensional peptide gel electrophoresis system for phosphopeptide mapping and amino acid sequencing.
    Gatti A; Traugh JA
    Anal Biochem; 1999 Jan; 266(2):198-204. PubMed ID: 9888976
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of two-dimensional phosphopeptide maps by electrospray ionization mass spectrometry of recovered peptides.
    Affolter M; Watts JD; Krebs DL; Aebersold R
    Anal Biochem; 1994 Nov; 223(1):74-81. PubMed ID: 7695105
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fast track to a phosphoprotein sketch - MALDI-TOF characterization of TLC-based tryptic phosphopeptide maps at femtomolar detection sensitivity.
    Kochin V; Imanishi SY; Eriksson JE
    Proteomics; 2006 Nov; 6(21):5676-82. PubMed ID: 17024653
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative phosphorylation site mapping from gel-derived proteins using a multidimensional ES/MS-based approach.
    Zappacosta F; Huddleston MJ; Annan RS
    Methods Mol Biol; 2004; 284():91-110. PubMed ID: 15173611
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.