These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 7393946)

  • 1. Unilateral mesolimbicocortical dopamine denervation decreases locomotion in the open field and after amphetamine.
    Jeste DV; Smith GP
    Pharmacol Biochem Behav; 1980 Mar; 12(3):453-7. PubMed ID: 7393946
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mesolimbicocortical dopamine terminal fields are necessary for normal locomotor and investigatory exploration in rats.
    Fink JS; Smith GP
    Brain Res; 1980 Oct; 199(2):359-84. PubMed ID: 7417789
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relationships between selective denervation of dopamine terminal fields in the anterior forebrain and behavioral responses to amphetamine and apomorphine.
    Fink JS; Smith GP
    Brain Res; 1980 Nov; 201(1):107-27. PubMed ID: 7191345
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ascending catecholamine pathways and amphetamine-induced locomotor activity: importance of dopamine and apparent non-involvement of norepinephrine.
    Roberts DC; Zis AP; Fibiger HC
    Brain Res; 1975 Aug; 93(3):441-54. PubMed ID: 1236760
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The relationship between striatal and mesolimbic dopamine dysfunction and the nature of circling responses following 6-hydroxydopamine and electrolytic lesions of the ascending dopamine systems of rat brain.
    Costall B; Marsden CD; Naylor RJ; Pycock CJ
    Brain Res; 1976 Dec; 118(1):87-113. PubMed ID: 990957
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mesolimbic dopamine and early post-6-OHDA lesion enhanced responses to d-amphetamine.
    Lynch MR; Carey RJ
    Pharmacol Biochem Behav; 1989 Feb; 32(2):577-80. PubMed ID: 2498910
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Possible involvement of serotonergic neurons in the reduction of locomotor hyperactivity caused by amphetamine in neonatal rats depleted of brain dopamine.
    Heffner TG; Seiden LS
    Brain Res; 1982 Jul; 244(1):81-90. PubMed ID: 6288184
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Blockade of amphetamine but not opiate-induced locomotion following antagonism of dopamine function in the rat.
    Vaccarino FJ; Amalric M; Swerdlow NR; Koob GF
    Pharmacol Biochem Behav; 1986 Jan; 24(1):61-5. PubMed ID: 3080760
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Denervation in the dopaminergic mesolimbic system: functional changes followed using (-)N-n-propylnorapomorphine depend on the basal activity levels of rats.
    Costall B; Hui SC; Naylor RJ
    Neuropharmacology; 1980 Nov; 19(11):1039-48. PubMed ID: 7192370
    [No Abstract]   [Full Text] [Related]  

  • 10. Selective 6OHDA-induced destruction of mesolimbic dopamine neurons: abolition of psychostimulant-induced locomotor activity in rats.
    Kelly PH; Iversen SD
    Eur J Pharmacol; 1976 Nov; 40(1):45-56. PubMed ID: 1033072
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nucleus accumbens opiate-dopamine interactions and locomotor activation in the rat: evidence for a pre-synaptic locus.
    Swerdlow NR; Amalric M; Koob GF
    Pharmacol Biochem Behav; 1987 Apr; 26(4):765-9. PubMed ID: 3110795
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Behavioural and biochemical effects of dopamine and noradrenaline depletion within the medial prefrontal cortex of the rat.
    Carter CJ; Pycock CJ
    Brain Res; 1980 Jun; 192(1):163-76. PubMed ID: 7189685
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Presynaptic dopaminergic neurotransmission mediates amphetamine-induced unconditioned but not amphetamine-conditioned locomotion and defecation in the rat.
    Di Lullo SL; Martin-Iverson MT
    Brain Res; 1991 Dec; 568(1-2):45-54. PubMed ID: 1726071
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stereotyped behaviour patterns and hyperactivity induced by amphetamine and apomorphine after discrete 6-hydroxydopamine lesions of extrapyramidal and mesolimbic nuclei.
    Castall B; Marsden CD; Naylor RJ; Pycock CJ
    Brain Res; 1977 Mar; 123(1):89-111. PubMed ID: 300267
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Abnormal pattern of amphetamine locomotion after 6-OHDA lesion of anteromedial caudate.
    Fink JS; Smith GP
    Pharmacol Biochem Behav; 1979 Jul; 11(1):23-30. PubMed ID: 493296
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Magnitude and duration of hyperactivity following neonatal 6-hydroxydopamine is related to the extent of brain dopamine depletion.
    Miller FE; Heffner TG; Kotake C; Seiden LS
    Brain Res; 1981 Dec; 229(1):123-32. PubMed ID: 6796194
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mesolimbic and mesocortical dopaminergic neurons are necessary for normal exploratory behavior in rats.
    Fink JS; Smith GP
    Neurosci Lett; 1980 Apr; 17(1-2):61-5. PubMed ID: 6820483
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Age-dependent effects of 6-hydroxydopamine on locomotor activity in the rat.
    Erinoff L; MacPhail RC; Heller A; Seiden LS
    Brain Res; 1979 Mar; 164():195-205. PubMed ID: 427556
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Decreased locomotor and investigatory exploration after denervation of catecholamine terminal fields in the forebrain of rats.
    Fink JS; Smith GP
    J Comp Physiol Psychol; 1979 Feb; 93(1):34-65. PubMed ID: 447888
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of the mesolimbic dopaminergic system in the desipramine effect in the forced swimming test.
    Cervo L; Grignaschi G; Samanin R
    Eur J Pharmacol; 1990 Mar; 178(1):129-33. PubMed ID: 2158897
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.