BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 7396638)

  • 1. Fatty acid and phospholipid composition of five psychrotrophic Pseudomonas spp. grown at different temperatures.
    Bhakoo M; Herbert RA
    Arch Microbiol; 1980 May; 126(1):51-5. PubMed ID: 7396638
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of temperature on the composition and physical properties of the lipids of Pseudomonas fluorescens.
    Cullen J; Phillips MC; Shipley GG
    Biochem J; 1971 Dec; 125(3):733-42. PubMed ID: 5004336
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ESR studies on the membrane properties of a moderately halophilic bacterium. II. Effect of extreme growth conditions on liposome properties.
    Hara H; Hyono A; Kuriyama S; Yano I; Masui M
    J Biochem; 1980 Nov; 88(5):1275-82. PubMed ID: 6257662
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Trans-monoenoic and polyunsaturated fatty acids in phospholipids of a Vibrio species of bacterium in relation to growth conditions.
    Henderson RJ; Millar RM; Sargent JR; Jostensen JP
    Lipids; 1993 May; 28(5):389-96. PubMed ID: 8316045
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lipid composition and chemotaxonomy of Pseudomonas putrefaciens (Alteromonas putrefaciens).
    Wilkinson SG; Caudwell PF
    J Gen Microbiol; 1980 Jun; 118(2):329-41. PubMed ID: 7441198
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of hydrostatic pressure and temperature on growth and lipid composition of the inner membrane of barotolerant Pseudomonas sp. BT1 isolated from the deep-sea.
    Kaneko H; Takami H; Inoue A; Horikoshi K
    Biosci Biotechnol Biochem; 2000 Jan; 64(1):72-9. PubMed ID: 10705450
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of fatty acids from (1- 14 C)acetyl-coenzyme A in subcellular particles of rat epididymal adipose tissue.
    Kanoh H; Lindsay DB
    Biochem J; 1972 Jul; 128(4):847-57. PubMed ID: 4638795
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of growth temperature on the phospholipid and fatty acyl compositions of non-proteolytic Clostridium botulinum.
    Evans RI; McClure PJ; Gould GW; Russell NJ
    Int J Food Microbiol; 1998 Apr; 40(3):159-67. PubMed ID: 9620123
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of temperature on the lipid and fatty acid composition of Yersinia pseudotuberculosis.
    Salamah AA; Ali MA
    New Microbiol; 1995 Jan; 18(1):27-33. PubMed ID: 7760754
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phospholipid and fatty acid composition of methanol-utilizing bacteria.
    Goldberg I; Jensen AP
    J Bacteriol; 1977 Apr; 130(1):535-7. PubMed ID: 856788
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of growth temperature on the lipids of Pseudomonas fluorescens.
    Gill CO
    J Gen Microbiol; 1975 Aug; 89(2):293-8. PubMed ID: 809540
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The lipid-containing bacteriophage PR4. Effects of altered lipid composition on the virion.
    Muller ED; Cronan JE
    J Mol Biol; 1983 Mar; 165(1):109-24. PubMed ID: 6341607
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of temperature and sodium chloride concentration on the phospholipid and fatty acid compositions of a halotolerant Planococcus sp.
    Miller KJ
    J Bacteriol; 1985 Apr; 162(1):263-70. PubMed ID: 3980436
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The lipid composition of azole-sensitive and azole-resistant strains of Candida albicans.
    Hitchcock CA; Barrett-Bee KJ; Russell NJ
    J Gen Microbiol; 1986 Sep; 132(9):2421-31. PubMed ID: 3540203
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermal regulation of the fatty acid composition of lipopolysaccharides and phospholipids of Proteus mirabilis.
    Rottem S; Markowitz O; Razin S
    Eur J Biochem; 1978 Apr; 85(2):445-50. PubMed ID: 206438
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extractable lipids of gram-negative marine bacteria: phospholipid composition.
    Oliver JD; Colwell RR
    J Bacteriol; 1973 Jun; 114(3):897-908. PubMed ID: 4197274
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Subgrouping of Pseudomonas cepacia by cellular fatty acid composition.
    Mukwaya GM; Welch DF
    J Clin Microbiol; 1989 Dec; 27(12):2640-6. PubMed ID: 2687315
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heterogeneity in lipid composition of the outer membrane and cytoplasmic membrane and cytoplasmic membrane of Pseudomonas BAL-31.
    Diedrich DL; Cota-Robles EH
    J Bacteriol; 1974 Sep; 119(3):1006-18. PubMed ID: 4852262
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lipomobilization in periparturient dairy cows influences the composition of plasma nonesterified fatty acids and leukocyte phospholipid fatty acids.
    Contreras GA; O'Boyle NJ; Herdt TH; Sordillo LM
    J Dairy Sci; 2010 Jun; 93(6):2508-16. PubMed ID: 20494158
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of temperature acclimation on Neurospora phospholipids. Fatty acid desaturation appears to be a key element in modifying phospholipid fluid properties.
    Martin CE; Siegel D; Aaronson LR
    Biochim Biophys Acta; 1981 Sep; 665(3):399-407. PubMed ID: 6457645
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.