These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 7396638)

  • 1. Fatty acid and phospholipid composition of five psychrotrophic Pseudomonas spp. grown at different temperatures.
    Bhakoo M; Herbert RA
    Arch Microbiol; 1980 May; 126(1):51-5. PubMed ID: 7396638
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of temperature on the composition and physical properties of the lipids of Pseudomonas fluorescens.
    Cullen J; Phillips MC; Shipley GG
    Biochem J; 1971 Dec; 125(3):733-42. PubMed ID: 5004336
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ESR studies on the membrane properties of a moderately halophilic bacterium. II. Effect of extreme growth conditions on liposome properties.
    Hara H; Hyono A; Kuriyama S; Yano I; Masui M
    J Biochem; 1980 Nov; 88(5):1275-82. PubMed ID: 6257662
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Trans-monoenoic and polyunsaturated fatty acids in phospholipids of a Vibrio species of bacterium in relation to growth conditions.
    Henderson RJ; Millar RM; Sargent JR; Jostensen JP
    Lipids; 1993 May; 28(5):389-96. PubMed ID: 8316045
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lipid composition and chemotaxonomy of Pseudomonas putrefaciens (Alteromonas putrefaciens).
    Wilkinson SG; Caudwell PF
    J Gen Microbiol; 1980 Jun; 118(2):329-41. PubMed ID: 7441198
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of hydrostatic pressure and temperature on growth and lipid composition of the inner membrane of barotolerant Pseudomonas sp. BT1 isolated from the deep-sea.
    Kaneko H; Takami H; Inoue A; Horikoshi K
    Biosci Biotechnol Biochem; 2000 Jan; 64(1):72-9. PubMed ID: 10705450
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of fatty acids from (1- 14 C)acetyl-coenzyme A in subcellular particles of rat epididymal adipose tissue.
    Kanoh H; Lindsay DB
    Biochem J; 1972 Jul; 128(4):847-57. PubMed ID: 4638795
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of growth temperature on the phospholipid and fatty acyl compositions of non-proteolytic Clostridium botulinum.
    Evans RI; McClure PJ; Gould GW; Russell NJ
    Int J Food Microbiol; 1998 Apr; 40(3):159-67. PubMed ID: 9620123
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of temperature on the lipid and fatty acid composition of Yersinia pseudotuberculosis.
    Salamah AA; Ali MA
    New Microbiol; 1995 Jan; 18(1):27-33. PubMed ID: 7760754
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phospholipid and fatty acid composition of methanol-utilizing bacteria.
    Goldberg I; Jensen AP
    J Bacteriol; 1977 Apr; 130(1):535-7. PubMed ID: 856788
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of growth temperature on the lipids of Pseudomonas fluorescens.
    Gill CO
    J Gen Microbiol; 1975 Aug; 89(2):293-8. PubMed ID: 809540
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The lipid-containing bacteriophage PR4. Effects of altered lipid composition on the virion.
    Muller ED; Cronan JE
    J Mol Biol; 1983 Mar; 165(1):109-24. PubMed ID: 6341607
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of temperature and sodium chloride concentration on the phospholipid and fatty acid compositions of a halotolerant Planococcus sp.
    Miller KJ
    J Bacteriol; 1985 Apr; 162(1):263-70. PubMed ID: 3980436
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The lipid composition of azole-sensitive and azole-resistant strains of Candida albicans.
    Hitchcock CA; Barrett-Bee KJ; Russell NJ
    J Gen Microbiol; 1986 Sep; 132(9):2421-31. PubMed ID: 3540203
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermal regulation of the fatty acid composition of lipopolysaccharides and phospholipids of Proteus mirabilis.
    Rottem S; Markowitz O; Razin S
    Eur J Biochem; 1978 Apr; 85(2):445-50. PubMed ID: 206438
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extractable lipids of gram-negative marine bacteria: phospholipid composition.
    Oliver JD; Colwell RR
    J Bacteriol; 1973 Jun; 114(3):897-908. PubMed ID: 4197274
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Subgrouping of Pseudomonas cepacia by cellular fatty acid composition.
    Mukwaya GM; Welch DF
    J Clin Microbiol; 1989 Dec; 27(12):2640-6. PubMed ID: 2687315
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heterogeneity in lipid composition of the outer membrane and cytoplasmic membrane and cytoplasmic membrane of Pseudomonas BAL-31.
    Diedrich DL; Cota-Robles EH
    J Bacteriol; 1974 Sep; 119(3):1006-18. PubMed ID: 4852262
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lipomobilization in periparturient dairy cows influences the composition of plasma nonesterified fatty acids and leukocyte phospholipid fatty acids.
    Contreras GA; O'Boyle NJ; Herdt TH; Sordillo LM
    J Dairy Sci; 2010 Jun; 93(6):2508-16. PubMed ID: 20494158
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of temperature acclimation on Neurospora phospholipids. Fatty acid desaturation appears to be a key element in modifying phospholipid fluid properties.
    Martin CE; Siegel D; Aaronson LR
    Biochim Biophys Acta; 1981 Sep; 665(3):399-407. PubMed ID: 6457645
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.