These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 7396719)
21. Reactivation of cyclosarin-inhibited rat brain acetylcholinesterase by pyridinium--oximes. Kuca K; Patocka J J Enzyme Inhib Med Chem; 2004 Feb; 19(1):39-43. PubMed ID: 15202491 [TBL] [Abstract][Full Text] [Related]
22. SAR study to find optimal cholinesterase reactivator against organophosphorous nerve agents and pesticides. Gorecki L; Korabecny J; Musilek K; Malinak D; Nepovimova E; Dolezal R; Jun D; Soukup O; Kuca K Arch Toxicol; 2016 Dec; 90(12):2831-2859. PubMed ID: 27582056 [TBL] [Abstract][Full Text] [Related]
23. Protective effect of some pyridinium salts on acetylcholinesterase against organophosphate inhibition. Gajewski D; Owczarczyk H Acta Physiol Pol; 1980; 31(1):93-9. PubMed ID: 7376900 [TBL] [Abstract][Full Text] [Related]
24. [Phosphonyloxime of soman; formation and reaction with acetylcholinesterase in vitro]. Schoene K Biochem Pharmacol; 1973 Dec; 22(23):2997-3003. PubMed ID: 4586721 [No Abstract] [Full Text] [Related]
25. Two possible orientations of the HI-6 molecule in the reactivation of organophosphate-inhibited acetylcholinesterase. Luo C; Leader H; Radic Z; Maxwell DM; Taylor P; Doctor BP; Saxena A Biochem Pharmacol; 2003 Aug; 66(3):387-92. PubMed ID: 12907237 [TBL] [Abstract][Full Text] [Related]
26. Recording spectrophotometric method for determination of dissociation and phosphorylation constants for the inhibition of acetylcholinesterase by organophosphates in the presence of substrate. Hart GJ; O'Brien RD Biochemistry; 1973 Jul; 12(15):2940-5. PubMed ID: 4737014 [No Abstract] [Full Text] [Related]
27. Reactivation kinetics of acetylcholinesterase from different species inhibited by highly toxic organophosphates. Worek F; Reiter G; Eyer P; Szinicz L Arch Toxicol; 2002 Sep; 76(9):523-9. PubMed ID: 12242610 [TBL] [Abstract][Full Text] [Related]
28. Investigation of the reactivation kinetics of a large series of bispyridinium oximes with organophosphate-inhibited human acetylcholinesterase. Winter M; Wille T; Musilek K; Kuca K; Thiermann H; Worek F Toxicol Lett; 2016 Feb; 244():136-142. PubMed ID: 26210933 [TBL] [Abstract][Full Text] [Related]
29. Influence of acetyl- -methylcholine, carbamoylcholine, and bis-pyridinium compounds on the activity of acetylcholinesterase. Kuhnen H Biochem Pharmacol; 1972 Apr; 21(8):1187-96. PubMed ID: 4556090 [No Abstract] [Full Text] [Related]
30. In vitro studies on the reactivation by oximes of phosphylated acetylcholinesterase--I. On the reactions of P2S with various organophosphates and the properties of the resultant phosphylated oximes. Harvey B; Scott RP; Sellers DJ; Watts P Biochem Pharmacol; 1986 Mar; 35(5):737-44. PubMed ID: 3954783 [TBL] [Abstract][Full Text] [Related]
31. Effect of imidazoles and pH on aging of phosphylated acetylcholinesterase. Sterri SH Biochem Pharmacol; 1977 Apr; 26(7):656-8. PubMed ID: 16611 [No Abstract] [Full Text] [Related]
32. [Interaction of membrane-bound and solubilized acetylcholinesterase from human and bovine erythrocytes with organophosphorus inhibitors]. Kugusheva LI; Rozengart VI Ukr Biokhim Zh (1978); 1986; 58(3):13-8. PubMed ID: 3727030 [TBL] [Abstract][Full Text] [Related]
33. Interactions between acetylcholinesterase, toxic organophosphorus compounds and a short series of structurally related non-oxime reactivators: Analysis of reactivation and inhibition kinetics in vitro. Horn G; de Koning MC; van Grol M; Thiermann H; Worek F Toxicol Lett; 2018 Dec; 299():218-225. PubMed ID: 30312685 [TBL] [Abstract][Full Text] [Related]
34. Reactivation and aging kinetics of human acetylcholinesterase inhibited by organophosphonylcholines. Worek F; Thiermann H; Szinicz L Arch Toxicol; 2004 Apr; 78(4):212-7. PubMed ID: 14647978 [TBL] [Abstract][Full Text] [Related]
35. Interaction of pentylsarin analogues with human acetylcholinesterase: a kinetic study. Worek F; Herkert NM; Koller M; Aurbek N; Thiermann H Toxicol Lett; 2009 Jun; 187(2):119-23. PubMed ID: 19429253 [TBL] [Abstract][Full Text] [Related]
36. A comparison of the efficacy of a bispyridinium oxime--1,4-bis-(2-hydroxyiminomethylpyridinium) butane dibromide and currently used oximes to reactivate sarin, tabun or cyclosarin-inhibited acetylcholinesterase by in vitro methods. Kuca K; Cabal J; Kassa J Pharmazie; 2004 Oct; 59(10):795-8. PubMed ID: 15544060 [TBL] [Abstract][Full Text] [Related]
37. Potency of five structurally different acetylcholinesterase reactivators to reactivate human brain cholinesterases inhibited by cyclosarin. Kuca K; Cabal J; Jun D; Hrabinova M Clin Toxicol (Phila); 2007; 45(5):512-5. PubMed ID: 17503257 [TBL] [Abstract][Full Text] [Related]
38. Reactivation of Sarin- or Soman-phosphonylated human acetylcholinesterase by bis-pyridinium mono-oximes. Sun MC; Li FZ; Chou TC Biochem Pharmacol; 1986 Jan; 35(2):347-9. PubMed ID: 3942603 [No Abstract] [Full Text] [Related]
39. Potency of new structurally different oximes to reactivate cyclosarin-inhibited human brain acetylcholinesterases. Kuca K; Cabal J; Jun D; Bajgar J; Hrabinova M J Enzyme Inhib Med Chem; 2006 Dec; 21(6):663-6. PubMed ID: 17252938 [TBL] [Abstract][Full Text] [Related]
40. Adaptation of a dynamic in vitro model with real-time determination of butyrylcholinesterase activity in the presence of cyclosarin and an oxime. Worek F; Horn G; Wille T; Thiermann H Toxicol In Vitro; 2015 Feb; 29(1):162-7. PubMed ID: 25450746 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]