These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 7396908)

  • 1. The tyrosine ring of oxytocin undergoes hindered rotation when the hormone is bound to neurophysin.
    Blumenstein M; Hruby VJ; Viswanatha V
    Biochem Biophys Res Commun; 1980 May; 94(2):431-7. PubMed ID: 7396908
    [No Abstract]   [Full Text] [Related]  

  • 2. Nuclear magnetic resonance studies of the interaction of peptides and hormones with bovine neurophysin.
    Balaram P; Bothner-By AA; Breslow E
    Biochemistry; 1973 Nov; 12(23):4695-704. PubMed ID: 4797991
    [No Abstract]   [Full Text] [Related]  

  • 3. Conformational preferences and binding to neurophysins of oxytocin analogs with sarcosine or N-methylalanine in position 7.
    Grzonka Z; Mishra PK; Bothner-By AA
    Int J Pept Protein Res; 1985 Apr; 25(4):375-81. PubMed ID: 2410380
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Studies of bovine neurophysin-neurohypophyseal hormone interactions.
    Cohen P; Camier M; Wolff J; Alazard R; Cohen JS; Griffin JH
    Ann N Y Acad Sci; 1975 Feb; 248():463-79. PubMed ID: 235235
    [No Abstract]   [Full Text] [Related]  

  • 5. Investigation of the interactions of oxytocin with neurophysins at low pH using carbon-13 nuclear magnetic resonance and carbon-13-labeled hormones.
    Blumenstein M; Hruby VJ; Viswanatha V
    Biochemistry; 1979 Aug; 18(16):3552-7. PubMed ID: 38833
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Drug-biomolecule interactions: proton magnetic resonance studies of complex formation between bovine neurophysins and oxytocin at molecular level.
    Griffin JH; Cohen JS; Cohen P; Camier M
    J Pharm Sci; 1975 Mar; 64(3):507-11. PubMed ID: 239193
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interactions of bovine neurophysins with neurohypophyseal hormones. On the role of tyrosine-49.
    Wolff J; Alazard R; Camier M; Griffin JH; Cohen P
    J Biol Chem; 1975 Jul; 250(13):5215-20. PubMed ID: 1150656
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Small peptides as analogs of oxytocin and vasopressin in their interactions with bovine neurophysin-II.
    Breslow E; Weis J; Menendez-Botet CJ
    Biochemistry; 1973 Nov; 12(23):4644-53. PubMed ID: 4797989
    [No Abstract]   [Full Text] [Related]  

  • 9. Transfer nuclear Overhauser effect study of the conformation of oxytocin bound to bovine neurophysin I.
    Lippens G; Hallenga K; Van Belle D; Wodak SJ; Nirmala NR; Hill P; Russell KC; Smith DD; Hruby VJ
    Biochemistry; 1993 Sep; 32(36):9423-34. PubMed ID: 8369312
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorescence studies of native and modified neurophysins. Effects of peptides and pH.
    Sur SS; Rabbani LD; Libman L; Breslow E
    Biochemistry; 1979 Mar; 18(6):1026-36. PubMed ID: 34422
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbon-13 chemical shifts on oxytocin as a consequence of its interaction with neurophysins.
    Blumenstein M; Hruby VJ; Viswanatha V; Chaturvedi D
    Biochemistry; 1984 May; 23(10):2153-61. PubMed ID: 6733077
    [TBL] [Abstract][Full Text] [Related]  

  • 12. (L-2-hydroxy-3-mercaptopropionic-acid)oxytocin. Circular dichroism studies of conformation and interaction with neurophysin.
    Breslow E; Stahl GL; Walter R
    Int J Pept Protein Res; 1980 Apr; 15(4):314-22. PubMed ID: 7419358
    [No Abstract]   [Full Text] [Related]  

  • 13. Evidence from hydrogen-1 and carbon-13 nuclear magnetic resonance studies that the dissociation rate of oxytocin from bovine neurophysin at neutral pH is slow.
    Blumenstein M; Hruby VJ; Yamamoto DM
    Biochemistry; 1978 Nov; 17(23):4971-7. PubMed ID: 31171
    [No Abstract]   [Full Text] [Related]  

  • 14. Binding of oxytocin and 8-arginine-vasopressin to neurophysin studied by 15N NMR using magnetization transfer and indirect detection via protons.
    Live DH; Cowburn D; Breslow E
    Biochemistry; 1987 Oct; 26(20):6415-22. PubMed ID: 3427016
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The behavior of the active site salt bridge of bovine neurophysins as monitored by 15N NMR spectroscopy and chemical substitution. Relationship to biochemical properties.
    Zheng C; Cahill S; Breslow E
    Biochemistry; 1996 Sep; 35(36):11763-72. PubMed ID: 8794757
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Co-operative binding of oxytocin to bovine neurophysin II.
    Hope DB; Wälti M; Winzor DJ
    Biochem J; 1975 May; 147(2):377-9. PubMed ID: 1237294
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dimerization of native and proteolytically modified neurophysins as monitored by proton magnetic resonance spectroscopy: proximity of tyrosine-49 to the subunit interface.
    Peyton D; Sardana V; Breslow E
    Biochemistry; 1986 Oct; 25(21):6579-86. PubMed ID: 3790544
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the molecular mechanism of interaction between the neurophysins and oxytocin and vasopressin.
    Smythies JR; Beaton JM; Benington F; Bradley RJ; Morin RF
    J Theor Biol; 1976 Nov; 63(1):33-48. PubMed ID: 1003996
    [No Abstract]   [Full Text] [Related]  

  • 19. Intra-axonal transport and turnover of neurophysins in the rat. A proposal for a possible origin of the minor neurophysin component.
    Burford GD; Pickering BT
    Biochem J; 1973 Dec; 136(4):1047-52. PubMed ID: 4786526
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of single tyrosine and histidine residues in bovine neurophysin I.
    Fukuda H; Hayakawa T; Kawamura J; Aizawa Y
    Chem Pharm Bull (Tokyo); 1975 Sep; 23(9):2184-6. PubMed ID: 1237362
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.