These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 7397125)

  • 81. Identification and localization of enzymes of the fumarate reductase and nitrate respiration systems of escherichia coli by crossed immunoelectrophoresis.
    van der Plas J; Hellingwerf KJ; Seijen HG; Guest JR; Weiner JH; Konings WN
    J Bacteriol; 1983 Feb; 153(2):1027-37. PubMed ID: 6218154
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Cytochromelinked fermentation in Bacteroides ruminicola.
    WHITE DC; BRYANT MP; CALDWELL DR
    J Bacteriol; 1962 Oct; 84(4):822-8. PubMed ID: 14000291
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Catalysis in fumarate reductase.
    Reid GA; Miles CS; Moysey RK; Pankhurst KL; Chapman SK
    Biochim Biophys Acta; 2000 Aug; 1459(2-3):310-5. PubMed ID: 11004445
    [TBL] [Abstract][Full Text] [Related]  

  • 84. DMSO respiration by the anaerobic rumen bacterium Wolinella succinogenes.
    Lorenzen J; Steinwachs S; Unden G
    Arch Microbiol; 1994; 162(4):277-81. PubMed ID: 7802544
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Inhibition of membrane-bound electron transport of the methanogenic archaeon Methanosarcina mazei Gö1 by diphenyleneiodonium.
    Brodersen J; Bäumer S; Abken HJ; Gottschalk G; Deppenmeier U
    Eur J Biochem; 1999 Jan; 259(1-2):218-24. PubMed ID: 9914496
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Reconstitution of a functional electron-transfer chain from purified formate dehydrogenase and fumarate reductase complexes.
    Unden G; Kröger A
    Methods Enzymol; 1986; 126():387-99. PubMed ID: 2856137
    [No Abstract]   [Full Text] [Related]  

  • 87. Oxidation of acetate through reactions of the citric acid cycle by Geobacter sulfurreducens in pure culture and in syntrophic coculture.
    Galushko AS; Schink B
    Arch Microbiol; 2000 Nov; 174(5):314-21. PubMed ID: 11131021
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Succinate dehydrogenase functioning by a reverse redox loop mechanism and fumarate reductase in sulphate-reducing bacteria.
    Zaunmüller T; Kelly DJ; Glöckner FO; Unden G
    Microbiology (Reading); 2006 Aug; 152(Pt 8):2443-2453. PubMed ID: 16849807
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Molecular properties of fumarate reductase isolated from the cytoplasmic membrane of Escherichia coli.
    Robinson JJ; Weiner JH
    Can J Biochem; 1982 Aug; 60(8):811-6. PubMed ID: 6751504
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Purification and properties of adenylyl sulfate reductase from the phototrophic sulfur bacterium, Thiocapsa roseopersicina.
    Trüper HG; Rogers LA
    J Bacteriol; 1971 Dec; 108(3):1112-21. PubMed ID: 5139533
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Purification and some characteristics of a cytochrome c-containing nitrous oxide reductase from Wolinella succinogenes.
    Teraguchi S; Hollocher TC
    J Biol Chem; 1989 Feb; 264(4):1972-9. PubMed ID: 2536696
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Cytochrome b reducible by succinate in an isolated succinate dehydrogenase-cytochrome b complex from Bacillus subtilis membranes.
    Hederstedt L
    J Bacteriol; 1980 Dec; 144(3):933-40. PubMed ID: 6777370
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Interactions of oxaloacetate with Escherichia coli fumarate reductase.
    Ackrell BA; Cochran B; Cecchini G
    Arch Biochem Biophys; 1989 Jan; 268(1):26-34. PubMed ID: 2643383
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Purification and properties of an extremely thermostable membrane-bound sulfur-reducing complex from the hyperthermophilic Pyrodictium abyssi.
    Dirmeier R; Keller M; Frey G; Huber H; Stetter KO
    Eur J Biochem; 1998 Mar; 252(3):486-91. PubMed ID: 9546664
    [TBL] [Abstract][Full Text] [Related]  

  • 95. A Third Way of Energy Conservation in Acetogenic Bacteria.
    Kremp F; Roth J; Müller V
    Microbiol Spectr; 2022 Aug; 10(4):e0138522. PubMed ID: 35699467
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Properties and function of fumarate reductase (NADH) in Streptococcus lactis.
    Hillier AJ; Jericho RE; Green SM; Jago GR
    Aust J Biol Sci; 1979 Dec; 32(6):625-35. PubMed ID: 44997
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Properties of a Wolinella succinogenes mutant lacking periplasmic sulfide dehydrogenase (Sud).
    Kotzian S; Kreis-Kleinschmidt V; Krafft T; Klimmek O; Macy JM; Kröger A
    Arch Microbiol; 1996 Jan; 165(1):65-8. PubMed ID: 8639024
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Fumarate reductase of Clostridium formicoaceticum. A peripheral membrane protein.
    Dorn M; Andreesen JR; Gottschalk G
    Arch Microbiol; 1978 Oct; 119(1):7-11. PubMed ID: 214050
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Schistosoma mansoni sporocysts contain rhodoquinone and produce succinate by fumarate reduction.
    Van Hellemond JJ; Van Remoortere A; Tielens AG
    Parasitology; 1997 Aug; 115 ( Pt 2)():177-82. PubMed ID: 10190173
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Experimental support for the "E pathway hypothesis" of coupled transmembrane e- and H+ transfer in dihemic quinol:fumarate reductase.
    Lancaster CR; Sauer US; Gross R; Haas AH; Graf J; Schwalbe H; Mäntele W; Simon J; Madej MG
    Proc Natl Acad Sci U S A; 2005 Dec; 102(52):18860-5. PubMed ID: 16380425
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.