BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 7397127)

  • 1. Identification of the carotenoid present in the B-800-850 antenna complex from Rhodopseudomonas capsulata as that which responds electrochromically to transmembrane electric fields.
    Webster GD; Cogdell RJ; Lindsay JG
    Biochim Biophys Acta; 1980 Jul; 591(2):321-30. PubMed ID: 7397127
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The location of the carotenoid in the B800--850 light-harvesting pigment--protein complex from Rhodopseudomonas capsulata.
    Webster GD; Cogdell RJ; Lindsay GJ
    FEBS Lett; 1980 Mar; 111(2):391-4. PubMed ID: 7358180
    [No Abstract]   [Full Text] [Related]  

  • 3. Spectral and functional comparisons between the carotenoids of the two antenna complexes of Rhodopseudomonas capsulata.
    Scolnik PA; Zannoni D; Marrs BL
    Biochim Biophys Acta; 1980 Dec; 593(2):230-40. PubMed ID: 7236633
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of the pigment content of an antenna pigment-protein complex from three strains of Rhodopseudomonas sphaeroides.
    Cogdell RJ; Crofts AR
    Biochim Biophys Acta; 1978 Jun; 502(3):409-16. PubMed ID: 306835
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Light-induced red shift of the Qx absorption band of light-harvesting bacteriochlorophyll in Rhodopseudomonas capsulata and Rhodopseudomonas sphaeroides.
    Bowyer JR; Crofts AR
    Arch Biochem Biophys; 1981 Apr; 207(2):416-26. PubMed ID: 6972735
    [No Abstract]   [Full Text] [Related]  

  • 6. Isolation and characterization of light harvesting bacteriochlorophyll.protein complexes from Rhodopseudomonas capsulata.
    Feick R; Drews G
    Biochim Biophys Acta; 1978 Mar; 501(3):499-513. PubMed ID: 629962
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The light-induced carotenoid absorbance changes in Rhodopseudomonas sphaeroides: an analysis and interpretation of the band shifts.
    Symons M; Swysen C; Sybesma C
    Biochim Biophys Acta; 1977 Dec; 462(3):706-17. PubMed ID: 304358
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Light- and diffusion-potential-induced shift of carotenoid spectrum in reconstituted vesicles of Rhodopseudomonas sphaeroides.
    Matsuura K; Nishimura M
    Biochim Biophys Acta; 1977 Dec; 462(3):700-5. PubMed ID: 304357
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of phospholipase A2 digestion on the carotenoid and bacteriochlorophyll components of the light-harvesting complexes in Rhodobacter sphaeroides chromatophores.
    Olivera LM; Niederman RA
    Biochemistry; 1993 Jan; 32(3):858-66. PubMed ID: 8422390
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The preparation and characterization of different types of light-harvesting pigment-protein complexes from some purple bacteria.
    Cogdell RJ; Thornber JP
    Ciba Found Symp; 1978 Feb 7-9; (61):61-79. PubMed ID: 110568
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Correlation between ATP synthesis and the decay of the arotenoid band shift after single flash activation of chromatophores from Rhodopseudomonas capsulata.
    Petty KM; Jackson JB
    Biochim Biophys Acta; 1979 Sep; 547(3):463-73. PubMed ID: 158382
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Localization of the exposed N-terminal region of the B800-850 alpha and beta light-harvesting polypeptides on the cytoplasmic surface of Rhodopseudomonas capsulata chromatophores.
    Tadros MH; Frank R; Drews G
    J Bacteriol; 1986 Jul; 167(1):96-100. PubMed ID: 3522557
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Shifts of the bacteriochlorophyll absorption band at 880 nm in chromatophores and subchromatophore pigment-protein complexes from Rhodospirillum rubrum].
    Barskiĭ EL; Samuilov VD
    Biokhimiia; 1979 Oct; 44(10):1805-13. PubMed ID: 41599
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrochromic responses of carotenoid absorbance bands in purified light-harvesting complexes from Rhodobacter capsulatus reconstituted into liposomes.
    Goodwin MG; Jackson JB
    Biochim Biophys Acta; 1993 Sep; 1144(2):191-8. PubMed ID: 8369337
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The state of chlorophyll and carotenoid in vivo. II. A linear dichroism study of pigment orientation in photosynthetic bacteria.
    Breton J
    Biochem Biophys Res Commun; 1974 Aug; 59(3):1011-7. PubMed ID: 4547333
    [No Abstract]   [Full Text] [Related]  

  • 16. Deficiencies of chromatophore proteins in some mutants of Rhodopseudomonas spheroides with altered carotenoids.
    Segen BJ; Gibson KD
    J Bacteriol; 1971 Mar; 105(3):701-9. PubMed ID: 4323296
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular-organization and biosynthesis of pigment-protein complexes of Rhodopseudomonas capsulata.
    Drews G; Peters J; Dierstein R
    Ann Microbiol (Paris); 1983; 134B(1):151-8. PubMed ID: 6357026
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generation of membrane potential during photosynthetic electron flow in chromatophores from Rhodopseudomonas capsulata.
    Packham NK; Greenrod JA; Jackson JB
    Biochim Biophys Acta; 1980 Aug; 592(1):130-42. PubMed ID: 7397136
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Correlation of membrane-potential-sensing carotenoid to pigment-protein complex II in Rhodopseudomonas sphaeroides.
    Matsuura K; Ishikawa T; Nishimura M
    Biochim Biophys Acta; 1980 May; 590(3):339-44. PubMed ID: 6966511
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spectral identification of the electrochromically active carotenoids of Rhodobacter sphaeroides in chromatophores and reconstituted liposomes.
    Crielaard W; van Mourik F; van Grondelle R; Konings WN; Hellingwerf KJ
    Biochim Biophys Acta; 1992 Apr; 1100(1):9-14. PubMed ID: 1567885
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.