BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 7397147)

  • 1. The effects of potassium and membrane potential on sodium-dependent glutamic acid uptake.
    Burckhardt G; Kinne R; Stange G; Murer H
    Biochim Biophys Acta; 1980 Jun; 599(1):191-201. PubMed ID: 7397147
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Studies on the mechanism of placental transport of L-glutamate (the effect of K+ in microvillous vesicles on L-glutamate uptake)].
    Iioka H; Moriyama I; Itoh K; Hino K; Ichijo M
    Nihon Sanka Fujinka Gakkai Zasshi; 1985 Oct; 37(10):2005-9. PubMed ID: 4078404
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characteristics of glutamic acid transport by rabbit intestinal brush-border membrane vesicles. Effects of Na+-, K+- and H+-gradients.
    Berteloot A
    Biochim Biophys Acta; 1984 Aug; 775(2):129-40. PubMed ID: 6147159
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of potassium and chloride ions on the Na+/acidic amino acid cotransport system in rat intestinal brush-border membrane vesicles.
    Corcelli A; Storelli C
    Biochim Biophys Acta; 1983 Jul; 732(1):24-31. PubMed ID: 6135444
    [TBL] [Abstract][Full Text] [Related]  

  • 5. L-glutamate transport in renal plasma membrane vesicles.
    Sacktor B
    Mol Cell Biochem; 1981 Sep; 39():239-51. PubMed ID: 6118822
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electroneutral Na+/dicarboxylic amino acid cotransport in rat intestinal brush border membrane vesicles.
    Corcelli A; Prezioso G; Palmieri F; Storelli C
    Biochim Biophys Acta; 1982 Jul; 689(1):97-105. PubMed ID: 6125215
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Membrane potential dependency of glutamic acid transport in rabbit jejunal brush-border membrane vesicles: K+ and H+ effects.
    Berteloot A
    Biochim Biophys Acta; 1986 Oct; 861(3):447-56. PubMed ID: 2876728
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrogenicity of sodium/L-glutamate cotransport in rabbit renal brush-border membranes: a reevaluation.
    Heinz E; Sommerfeld DL; Kinne RK
    Biochim Biophys Acta; 1988 Jan; 937(2):300-8. PubMed ID: 2892532
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stimulation of the efflux of L-glutamate from renal brush-border membrane vesicles by extravesicular potassium.
    Sacktor B; Lepor N; Schneider EG
    Biosci Rep; 1981 Sep; 1(9):709-13. PubMed ID: 6125220
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Taurocholate--sodium co-transport by brush-border membrane vesicles isolated from rat ileum.
    Lücke H; Stange G; Kinne R; Murer H
    Biochem J; 1978 Sep; 174(3):951-8. PubMed ID: 581553
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Na-dependent L-glutamate transport by eel intestinal BBMV: role of K+ and Cl-.
    Romano PM; Ahearn GA; Storelli C
    Am J Physiol; 1989 Jul; 257(1 Pt 2):R180-8. PubMed ID: 2568760
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sulphate-ion/sodium-ion co-transport by brush-border membrane vesicles isolated from rat kidney cortex.
    Lücke H; Stange G; Murer H
    Biochem J; 1979 Jul; 182(1):223-9. PubMed ID: 91368
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transport characteristics of L-glutamate in human jejunal brush-border membrane vesicles.
    Harig JM; Rajendran VM; Barry JA; Ramaswamy K
    Biochim Biophys Acta; 1987 Oct; 903(2):358-64. PubMed ID: 2888487
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sodium gradient-dependent L-glutamate transport is localized to the canalicular domain of liver plasma membranes. Studies in rat liver sinusoidal and canalicular membrane vesicles.
    Ballatori N; Moseley RH; Boyer JL
    J Biol Chem; 1986 May; 261(14):6216-21. PubMed ID: 2871024
    [TBL] [Abstract][Full Text] [Related]  

  • 15. myo-Inositol transport in renal brush border vesicles and it inhibition by D-glucose.
    Hammerman MR; Sacktor B; Daughaday WH
    Am J Physiol; 1980 Aug; 239(2):F113-20. PubMed ID: 6773422
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biotin uptake mechanisms in brush-border and basolateral membrane vesicles isolated from rabbit kidney cortex.
    Podevin RA; Barbarat B
    Biochim Biophys Acta; 1986 Apr; 856(3):471-81. PubMed ID: 3964692
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phenylalanine uptake in isolated renal brush border vesicles.
    Evers J; Murer H; Kinne R
    Biochim Biophys Acta; 1976 Apr; 426(4):598-615. PubMed ID: 1259984
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transport of amino acids in renal brush border membrane vesicles. Uptake of L-proline.
    Hammerman MR; Sacktor B
    J Biol Chem; 1977 Jan; 252(2):591-5. PubMed ID: 833146
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Renal handling of taurine, L-alanine, L-glutamate and D-glucose in Opsanus tau: studies on isolated brush border membrane vesicles.
    Wolff NA; Kinne R; Elger B; Goldstein L
    J Comp Physiol B; 1987; 157(5):573-81. PubMed ID: 2891734
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transport of acidic amino acids by human jejunal brush-border membrane vesicles.
    Rajendran VM; Harig JM; Adams MB; Ramaswamy K
    Am J Physiol; 1987 Jan; 252(1 Pt 1):G33-9. PubMed ID: 2880511
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.