BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 7397171)

  • 1. The choline transport system of erythrocytes distribution of the free carrier in the membrane.
    Krupka RM; Devés R
    Biochim Biophys Acta; 1980 Jul; 600(1):228-32. PubMed ID: 7397171
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The binding and translocation steps in transport as related to substrate structure. A study of the choline carrier of erythrocytes.
    Devés R; Krupka RM
    Biochim Biophys Acta; 1979 Nov; 557(2):469-85. PubMed ID: 497194
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The comparative specificity of the inner and outer substrate transfer sites in the choline carrier of human erythrocytes.
    Deves R; Krupka RM
    J Membr Biol; 1984; 80(1):71-80. PubMed ID: 6481794
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reaction of internal forms of the choline carrier of erythrocytes with N-ethylmaleimide: evidence for a carrier conformational change on complex formation.
    Devés R; Krupka RM
    J Membr Biol; 1981; 63(1-2):99-103. PubMed ID: 7310854
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The carrier reorientation step in erythrocyte choline transport: pH effects and the involvement of a carrier ionizing group.
    Devés R; Reyes G; Krupka RM
    J Membr Biol; 1986; 93(2):165-75. PubMed ID: 3806655
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence for a two-state mobile carrier mechanism in erythrocyte choline transport: effects of substrate analogs on inactivation of the carrier by N-ethylmaleimide.
    Devés R; Krupka RM
    J Membr Biol; 1981; 61(1):21-30. PubMed ID: 7265181
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Asymmetrical binding of phloretin to the glucose transport system of human erythrocytes.
    Krupka RM
    J Membr Biol; 1985; 83(1-2):71-80. PubMed ID: 4039758
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Apparent noncompetitive inhibition of choline transport in erythrocytes by inhibitors bound at the substrate site.
    Devés R; Krupka RM
    J Membr Biol; 1983; 74(3):183-9. PubMed ID: 6887231
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects on transport of rapidly penetrating, competing substrates: activation and inhibition of the choline carrier in erythrocytes by imidazole.
    Devés R; Krupka RM
    J Membr Biol; 1987; 99(1):13-23. PubMed ID: 3430573
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An experimental test for cyclic versus linear transport models. The mechanisms of glucose and choline transport in erythrocytes.
    Krupka RM; Devés R
    J Biol Chem; 1981 Jun; 256(11):5410-6. PubMed ID: 7240146
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The mechanism of anion transport across human red blood cell membranes as revealed with a fluorescent substrate: II. Kinetic properties of NBD-taurine transfer in asymmetric conditions.
    Eidelman O; Cabantchik ZI
    J Membr Biol; 1983; 71(1-2):149-61. PubMed ID: 6834420
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Looking for probes of gated channels: studies of the inhibition of glucose and choline transport in erythrocytes.
    Krupka RM; Devés R
    Biochem Cell Biol; 1986 Nov; 64(11):1099-107. PubMed ID: 2435306
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of choline transport in erythrocytes by n-alkanols.
    Devés R; Krupka RM
    Biochim Biophys Acta; 1990 Nov; 1030(1):32-40. PubMed ID: 2265191
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetics of transport systems dependent on periplasmic binding proteins.
    Krupka RM
    Biochim Biophys Acta; 1992 Sep; 1110(1):1-10. PubMed ID: 1390828
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reaction of the glucose carrier of erythrocytes with sodium tetrathionate: evidence for inward-facing and outward-facing carrier conformations.
    Krupka RM
    J Membr Biol; 1985; 84(1):35-43. PubMed ID: 4039759
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetic independence between red cell anion exchange and urea transport.
    Fröhlich O; Jones SC
    Biochim Biophys Acta; 1988 Sep; 943(3):531-4. PubMed ID: 3415994
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification by photoaffinity labeling of a membrane thyroid hormone-binding protein associated with the triiodothyronine transport system in rat erythrocytes.
    Samson M; Osty J; Blondeau JP
    Endocrinology; 1993 Jun; 132(6):2470-6. PubMed ID: 8504750
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The choline carrier of erythrocytes: location of the NEM-reactive thiol group in the inner gated channel.
    Krupka RM; Devés R
    J Membr Biol; 1988; 101(1):43-7. PubMed ID: 2452882
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A simple experimental approach to the determination of carrier transport parameters for unlabeled substrate analogs.
    Devés R; Krupka RM
    Biochim Biophys Acta; 1979 Oct; 556(3):524-32. PubMed ID: 486475
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cytochalasin B and the kinetics of inhibition of biological transport: a case of asymmetric binding to the glucose carrier.
    Devés R; Krupka RM
    Biochim Biophys Acta; 1978 Jul; 510(2):339-48. PubMed ID: 667049
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.