These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 7397175)

  • 1. X-ray diffraction and electron microscopy studies of frozen erythrocyte membrane preparations.
    Rzepecki LM; Berriman J; Finean JB
    Biochim Biophys Acta; 1980 Jul; 600(1):72-8. PubMed ID: 7397175
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phase separation in frozen erythrocyte membrane preparations.
    Finean JB; Hutchinson A; Mills D
    J Microsc; 1985 Oct; 140(Pt 1):93-8. PubMed ID: 4093969
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An X-ray diffraction and electron microscopy study of the extraction of erythrocyte membranes with the bile salt, cholate.
    Finean JB; Gunn TK; Hutchinson A; Mills D
    Biochim Biophys Acta; 1984 Oct; 777(1):140-6. PubMed ID: 6487616
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure and thermotropic phase behaviour of detergent-resistant membrane raft fractions isolated from human and ruminant erythrocytes.
    Quinn PJ; Tessier C; Rainteau D; Koumanov KS; Wolf C
    Biochim Biophys Acta; 2005 Jul; 1713(1):5-14. PubMed ID: 15963456
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Freeze-fracture and etching studies on membrane damage on human erythrocytes caused by formation of intracellular ice.
    Fujikawa S
    Cryobiology; 1980 Aug; 17(4):351-62. PubMed ID: 7398362
    [No Abstract]   [Full Text] [Related]  

  • 6. A freeze-etch electron microscopic study of liquid propane jet-frozen human erythrocyte membranes.
    Espevik T; Elgsaeter A
    J Microsc; 1981 May; 122(Pt 2):159-63. PubMed ID: 7230255
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The appearance of erythrocyte membrane elevations. Effects of cooling rates.
    Goekoop JG; Spies F; Wisse DM; de Vries E; Verkleij AJ; van Kempen GM
    Cell Biol Int Rep; 1980 Jan; 4(1):37-42. PubMed ID: 7388959
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Variations in the appearance of membrane particles after various pretreatments.
    Richter W
    Acta Histochem Suppl; 1981; 23():165-71. PubMed ID: 6784161
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Freeze-fracture electron microscopy of human erythrocytes lacking the major membrane sialoglycoprotein.
    Bächi T; Whiting K; Tanner MJ; Metaxas MN; Anstee DJ
    Biochim Biophys Acta; 1977 Feb; 464(3):635-9. PubMed ID: 836829
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic study of intramembranous particles in human fresh erythrocytes using an "in vitro cryotechnique".
    Terada N; Ohno N; Fujii Y; Baba T; Ohno S
    Microsc Res Tech; 2006 Apr; 69(4):291-5. PubMed ID: 16586489
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fracture-label:O cytochemistry of freeze-fracture faces in the erythrocyte membrane.
    Pinto da Silva P; Parkison C; Dwyer N
    Proc Natl Acad Sci U S A; 1981 Jan; 78(1):343-7. PubMed ID: 6165988
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural states of myelin observed by x-ray diffraction and freeze-fracture electron microscopy.
    Kirschner DA; Hollingshead CJ; Thaxton C; Caspar DL; Goodenough DA
    J Cell Biol; 1979 Jul; 82(1):140-9. PubMed ID: 479295
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Correlated x-ray diffraction and freeze-fracture studies on membrane model systems. Perturbations induced by freeze-fracture preparative procedures.
    Costello MJ; Gulik-Krzywicki T
    Biochim Biophys Acta; 1976 Dec; 455(2):412-32. PubMed ID: 187241
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Freeze-fracture characterization of 'young' and 'old' human erythrocytes.
    Fischbeck KH; Bonilla E; Schotland DL
    Biochim Biophys Acta; 1982 Feb; 685(2):207-10. PubMed ID: 7059602
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The determination of the electron density profile of the human erythrocyte ghost membrane by small-angle x-ray diffraction.
    Pape EH; Klott K; Kreutz W
    Biophys J; 1977 Aug; 19(2):141-61. PubMed ID: 406942
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The use of low temperature X-ray diffraction to evaluate freezing methods used in freeze-fracture electron microscopy.
    Gulik-Krzywicki T; Costello MJ
    J Microsc; 1978 Jan; 112(1):103-13. PubMed ID: 641982
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative estimation of non-lamellar structures in membranes. A 31P-nmr and electron microscopical study of the influence of linolic acid on the erythrocyte membrane.
    Arnold K; Pratsch L; Meyer HW
    Acta Histochem; 1982; 70(2):205-13. PubMed ID: 6810632
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes of the asymmetrical particle distribution in erythrocyte membranes.
    Richter W
    Acta Histochem Suppl; 1981; 23():157-63. PubMed ID: 6784160
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of various cooling rates on the membrane ultrastructure of frozen human erythrocytes and its relation to the extent of haemolysis after thawing.
    Fujikawa S
    J Cell Sci; 1981 Jun; 49():369-82. PubMed ID: 7309810
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fusion of human erythrocytes induced by Sendai virus: freeze-fracture aspects.
    da Silva PP; Shimizu K; Parkison C
    J Cell Sci; 1980 Jun; 43():419-32. PubMed ID: 6252221
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.