BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 7397271)

  • 1. [Permeability of bilayer lipid membranes to nystatin].
    Alekberli EK; Topaly VP
    Biofizika; 1980; 25(3):566-8. PubMed ID: 7397271
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Permeability of bilayer lipid membranes to amphotericin B].
    Alekberli EK; Topaly VP
    Biofizika; 1984; 29(2):322-3. PubMed ID: 6722201
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Structural rearrangements induced by glycerol increase the permeability of bilayer lipid membranes for amphotericin].
    Rudenko SV
    Biofizika; 1986; 31(1):59-63. PubMed ID: 2420371
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of the sterol superlattice in the partitioning of the antifungal drug nystatin into lipid membranes.
    Wang MM; Sugar IP; Chong PL
    Biochemistry; 1998 Aug; 37(34):11797-805. PubMed ID: 9718302
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Examination of bilayer lipid membranes for 'pin-hole' character.
    Rehak M; Hall EA
    Analyst; 2004 Nov; 129(11):1014-25. PubMed ID: 15508029
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pores formed in lipid bilayer membranes by nystatin, Differences in its one-sided and two-sided action.
    Marty A; Finkelstein A
    J Gen Physiol; 1975 Apr; 65(4):515-26. PubMed ID: 1151324
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aqueous pores created in thin lipid membranes by the polyene antibiotics nystatin and amphotericin B.
    Finkelstein A; Holz R
    Membranes; 1973; 2():377-408. PubMed ID: 4585230
    [No Abstract]   [Full Text] [Related]  

  • 8. [Study of the mechanisms of action of lipid peroxidation products on the permeability of bilayer lipid membranes].
    Sokolov VS; Churakova TD; Bulgakov VG; Kagan VE; Bilenko MV
    Biofizika; 1981; 26(1):147-9. PubMed ID: 7225444
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Cholesterol esters increase the permeability of lecithin bilayer membranes].
    Vasserman AN; Karvat R; Ivanov AS; Mol'nar AA; Korepanova EA
    Biofizika; 1983; 28(4):643-6. PubMed ID: 6615902
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of acetylsalicylic acid on the current-voltage characteristics of planar lipid membranes.
    Watala C; Drapeza A; Loban V; Asztemborska M; Shcharbin D
    Biophys Chem; 2009 Jun; 142(1-3):27-33. PubMed ID: 19321250
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Amphotericin B channel conductance inactivation].
    Ibragimova VKh; Alieva IN; Aliev DI
    Tsitologiia; 2003; 45(8):804-11. PubMed ID: 15216632
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of NaCl and KCl on phosphatidylcholine and phosphatidylethanolamine lipid membranes: insight from atomic-scale simulations for understanding salt-induced effects in the plasma membrane.
    Gurtovenko AA; Vattulainen I
    J Phys Chem B; 2008 Feb; 112(7):1953-62. PubMed ID: 18225878
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Mode of proteoliposome association with the planar bilayer phospholipid membrane].
    Severina II
    Biokhimiia; 1983 Sep; 48(9):1522-9. PubMed ID: 6626612
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Structure and permeability of the contact zone of 2 artificial lipid-lipoprotein membranes].
    Giul'khandanian MZ; Manukian KG
    Biofizika; 1986; 31(1):64-7. PubMed ID: 3955092
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Ion permeability of cerebroside and sphingomyelin bilayer membranes].
    Mkheian EE; Sotskiĭ OP; Akopov SE; Badzhinian SA
    Biofizika; 1981; 26(1):137-8. PubMed ID: 7225441
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Plasma lipoproteins, modifiers of the ionic permeability of artificial lipid membranes].
    Tverdislov VA; El' Karadagi S; Martseniuk OV; Gerasimova EN
    Biofizika; 1980; 25(5):841-7. PubMed ID: 7191329
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controlled delivery of membrane proteins to artificial lipid bilayers by nystatin-ergosterol modulated vesicle fusion.
    de Planque MR; de Planque MR; Mendes GP; Zagnoni M; Sandison ME; Fisher KH; Berry RM; Watts A; Morgan H
    IEE Proc Nanobiotechnol; 2006 Apr; 153(2):21-30. PubMed ID: 16671820
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of hexadecaprenol on molecular organisation and transport properties of model membranes.
    Janas T; Nowotarski K; Gruszecki WI; Janas T
    Acta Biochim Pol; 2000; 47(3):661-73. PubMed ID: 11310968
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Effect of pH on the properties of planar lipid bilayers of cholesterol and alpha-monolaurine].
    Bagaveev IA; Rovin IuG; Nedozorov PM; Likhatskaia GN
    Biofizika; 1980; 25(6):1091-2. PubMed ID: 7448225
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lipopolysaccharides in bacterial membranes act like cholesterol in eukaryotic plasma membranes in providing protection against melittin-induced bilayer lysis.
    Allende D; McIntosh TJ
    Biochemistry; 2003 Feb; 42(4):1101-8. PubMed ID: 12549932
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.