These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 7397512)

  • 41. Thalamic collaterals of corticostriatal axons: their termination field and synaptic targets in cats.
    Paré D; Smith Y
    J Comp Neurol; 1996 Sep; 372(4):551-67. PubMed ID: 8876453
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Selective retrograde labeling of neurons of the cat vestibular ganglion with [3H]D-aspartate.
    Dememes D; Raymond J; Sans A
    Brain Res; 1984 Jun; 304(1):188-91. PubMed ID: 6744038
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Do pontocerebellar fibers send collaterals to the cerebellar nuclei?
    Dietrichs E; Bjaalie JG; Brodal P
    Brain Res; 1983 Jan; 259(1):127-31. PubMed ID: 6824925
    [TBL] [Abstract][Full Text] [Related]  

  • 44. An autoradiographic study of the cerebellopontine projections from the interposed and lateral cerebellar nuclei in the rat.
    Angaut P; Cicirata F; Pantò MR
    J Hirnforsch; 1985; 26(4):463-70. PubMed ID: 4067284
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Topographical organization in the early postnatal corticopontine projection: a carbocyanine dye and 3-D computer reconstruction study in the rat.
    Leergaard TB; Lakke EA; Bjaalie JG
    J Comp Neurol; 1995 Oct; 361(1):77-94. PubMed ID: 8550883
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Electron microscopic identification of cerebellopontine axon terminals in the opossum.
    Mihailoff GA
    Brain Res; 1979 Apr; 165(1):1-12. PubMed ID: 427574
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Afferents to the flocculus of the cerebellum in the rhesus macaque as revealed by retrograde transport of horseradish peroxidase.
    Langer T; Fuchs AF; Scudder CA; Chubb MC
    J Comp Neurol; 1985 May; 235(1):1-25. PubMed ID: 3989000
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Axons from non-cochlear sources in the anteroventral cochlear nucleus of the cat. A study with the rapid Golgi method.
    Cant NB; Morest DK
    Neuroscience; 1978; 3(11):1003-29. PubMed ID: 85282
    [No Abstract]   [Full Text] [Related]  

  • 49. The organization of the efferent projections of the parabrachial nucleus of the forebrain in the rat: a retrograde fluorescent double-labeling study.
    Voshart K; van der Kooy D
    Brain Res; 1981 May; 212(2):271-86. PubMed ID: 7225869
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Axonal ramification of neurons in the nucleus reticularis tegmenti pontis projecting to the paramedian lobule in the rabbit cerebellum.
    Bukowska D; Mierzejewska-Krzyzowska B; Zguczyński L
    Neurosci Res; 2005 Jan; 51(1):15-24. PubMed ID: 15596236
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Cerebeller afferents from neurons in motor nuclei of cranial nerves demonstrated by retrograde axonal transport of horseradish peroxidase.
    Kotchabhakdi N; Walberg F
    Brain Res; 1977 Nov; 137(1):158-63. PubMed ID: 72590
    [No Abstract]   [Full Text] [Related]  

  • 52. Axonal projections of mechanosensory neurons in the connectives and peripheral nerves of the leech, Haemopis marmorata.
    Johansen J; Hockfield S; McKay RD
    J Comp Neurol; 1984 Jun; 226(2):255-62. PubMed ID: 6736302
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The pontocerebellar system in the opossum, Didelphis virginiana. A horseradish peroxidase study.
    Mihailoff GA; Martin GF; Linauts M
    Brain Behav Evol; 1980; 17(3):179-208. PubMed ID: 7388596
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Dorsolateral pontospinal systems. Possible routes for catecholamine modulation of nociception.
    Martin GF; Humbertson AO; Laxson C; Panneton WM
    Brain Res; 1979 Mar; 163(2):333-8. PubMed ID: 427550
    [No Abstract]   [Full Text] [Related]  

  • 55. [The divergence of the axonal collaterals of the thalamic neurons to the visual and associative cortexes in cats].
    Shumikhina SI
    Neirofiziologiia; 1990; 22(4):513-20. PubMed ID: 1704488
    [TBL] [Abstract][Full Text] [Related]  

  • 56. [Catecholamine containing neurons in the pontine tegmentum and their pathways in the cat].
    Maeda T; Pin C; Salvert D; Ligier M; Jouvet M
    Brain Res; 1973 Jul; 57(1):119-52. PubMed ID: 4716749
    [No Abstract]   [Full Text] [Related]  

  • 57. Branching of inferior olivary axons to terminate in different folia, lobules or lobes of the cerebellum.
    Armstrong DM; Harvey RJ; Schild RF
    Brain Res; 1973 May; 54():365-71. PubMed ID: 4709152
    [No Abstract]   [Full Text] [Related]  

  • 58. [Recent advances in anatomy of the basal ganglia].
    Nakamura Y; Okoyama S; Moriizumi T; Kitao Y
    No To Shinkei; 1985 Mar; 37(3):211-24. PubMed ID: 3893482
    [No Abstract]   [Full Text] [Related]  

  • 59. Axonal branching of basal forebrain projections to the neocortex: a double-labeling study in the cat.
    Boylan MK; Fisher RS; Hull CD; Buchwald NA; Levine MS
    Brain Res; 1986 Jun; 375(1):176-81. PubMed ID: 2424567
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [Sources of the afferent pathways of the motor cortex in cats revealed by using the peroxidase method].
    Badmindra VP; Valberg F
    Arkh Anat Gistol Embriol; 1978 May; 74(5):13-8. PubMed ID: 666578
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.