These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 7399070)

  • 1. An assessment of the value of the crypticity of NADH-ferricyanide reductase as an indicator of structural integrity of human erythrocyte membranes [proceedings].
    Stewart CA; Agutter PS; Kadlubowski M
    Biochem Soc Trans; 1980 Jun; 8(3):325. PubMed ID: 7399070
    [No Abstract]   [Full Text] [Related]  

  • 2. Evidence for the existence of two NADH-ferricyanide reductases in human erythrocyte membranes [proceedings].
    Agutter PS; Dallas JM; Newman P; Kadlubowski M
    Biochem Soc Trans; 1980 Jun; 8(3):326. PubMed ID: 7399071
    [No Abstract]   [Full Text] [Related]  

  • 3. A transmembranous NADH-dehydrogenase in human erythrocyte membranes.
    Grebing C; Crane FL; Löw H; Hall K
    J Bioenerg Biomembr; 1984 Dec; 16(5-6):517-33. PubMed ID: 6537435
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insulin control of a transplasma membrane NADH dehydrogenase in erythrocyte membranes.
    Crane FL; Crane HE; Sun IL; MacKellar WC; Grebing C; Löw H
    J Bioenerg Biomembr; 1982 Dec; 14(5-6):425-33. PubMed ID: 6761340
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Purification and properties of human erythrocyte membrane NADH-cytochrome b5 reductase.
    Kitajima S; Yasukochi Y; Minakami S
    Arch Biochem Biophys; 1981 Aug; 210(1):330-9. PubMed ID: 7294831
    [No Abstract]   [Full Text] [Related]  

  • 6. Reduction of extracellular potassium ferricyanide by transmembrane NADH: (acceptor) oxidoreductase of human erythrocytes.
    Schipfer W; Neophytou B; Trobisch R; Groiss O; Goldenberg H
    Int J Biochem; 1985; 17(7):819-23. PubMed ID: 4054423
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasma membrane nadh dehydrogenase and Ca2+-dependent potassium transport in erythrocytes of several animal species.
    Miner C; López-Burillo S; García-Sancho J; Herreros B
    Biochim Biophys Acta; 1983 Jan; 727(2):266-72. PubMed ID: 6404302
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Membrane-bound cytochrome b5 reductase (methemoglobin reductase) in human erythrocytes. Study in normal and methemoglobinemic subjects.
    Choury D; Leroux A; Kaplan JC
    J Clin Invest; 1981 Jan; 67(1):149-55. PubMed ID: 7451647
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence for endogenous proteolytic solubilization of human red-cell membrane NADH-cytochrome b5 reductase.
    Choury D; Wajcman H; Boissel JP; Kaplan JC
    FEBS Lett; 1981 Apr; 126(2):172-4. PubMed ID: 7016586
    [No Abstract]   [Full Text] [Related]  

  • 10. Cytosolic and membrane-bound methemoglobin reductases in erythrocytes of the opossum, Didelphis virginiana.
    Bethlenfalvay NC; Waterman MR; Lima JE; Waldrup T
    Comp Biochem Physiol B; 1982; 73(3):591-4. PubMed ID: 7151403
    [No Abstract]   [Full Text] [Related]  

  • 11. Transplasmalemma NADH dehydrogenase is inhibited by actinomycin D.
    Sun IL; Crane FL
    Biochem Biophys Res Commun; 1981 Jul; 101(1):68-75. PubMed ID: 7284008
    [No Abstract]   [Full Text] [Related]  

  • 12. The respiratory chain NADH dehydrogenase of Escherichia coli. Isolation of an NADH:quinone oxidoreductase from membranes and comparison with the membrane-bound NADH:dichlorophenolindophenol oxidoreductase.
    Thomson JW; Shapiro BM
    J Biol Chem; 1981 Mar; 256(6):3077-84. PubMed ID: 7009604
    [No Abstract]   [Full Text] [Related]  

  • 13. Purification and properties of the intact form of NADH-cytochrome b5 reductase from rabbit liver microsomes.
    Mihara K; Sato R
    J Biochem; 1975 Nov; 78(5):1057-73. PubMed ID: 175049
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NADH-monodehydroascorbate reductase in human erythrocyte membranes.
    Goldenberg H; Grebing C; Löw H
    Biochem Int; 1983 Jan; 6(1):1-9. PubMed ID: 6679313
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human NADH-cytochrome b5 reductases: comparison among those of erythrocyte membrane, erythrocyte cytosol, and liver microsomes.
    Kitajima S; Minakami S
    J Biochem; 1983 Feb; 93(2):615-20. PubMed ID: 6841358
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Resealing to small solutes of white erythrocyte membranes after incubation with EDTA, Ca2+, salt, sucrose, phospholipase C.
    Moore RB; Manery JF
    Arch Biochem Biophys; 1981 Oct; 211(1):179-91. PubMed ID: 6795994
    [No Abstract]   [Full Text] [Related]  

  • 17. Kinetics of calmodulin-dependent (Ca2+ + Mg2+)-ATPase in plasma membranes and solubilized membranes from erythrocytes.
    Scharff O
    Arch Biochem Biophys; 1981 Jun; 209(1):72-80. PubMed ID: 6116479
    [No Abstract]   [Full Text] [Related]  

  • 18. Studies on adenosine 3',5'-monophosphate phosphodiesterase of human erythrocyte membranes.
    Suzuki K; Terao T; Osawa T
    Biochim Biophys Acta; 1980 Oct; 602(1):78-86. PubMed ID: 6251888
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of erythrocyte plasma membrane NADH dehydrogenase by nucleotides and uncouplers.
    Howland JL; Osrin D; Donatelli M; Theofrastous JP
    Biochim Biophys Acta; 1984 Dec; 778(3):400-4. PubMed ID: 6509043
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of domain-specific erythrocyte membrane modulators on acetylcholinesterase and NADH:cytochrome b5 reductase activities.
    Palmieri DA; Rangachari A; Butterfield DA
    Arch Biochem Biophys; 1990 Jul; 280(1):224-8. PubMed ID: 2162152
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.