These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 7399410)

  • 41. The regulation of glutamate metabolism by tricarboxylic acid-cycle activity in rat brain mitochondria.
    Dennis SC; Clark JB
    Biochem J; 1978 Apr; 172(1):155-62. PubMed ID: 656069
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Occurrence of the malate-aspartate shuttle in various tumor types.
    Greenhouse WV; Lehninger AL
    Cancer Res; 1976 Apr; 36(4):1392-6. PubMed ID: 177206
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The cardioprotective effect of sildenafil is mediated by the activation of malate dehydrogenase and an increase in the malate-aspartate shuttle in cardiomyocytes.
    Gevi F; Campolo F; Naro F; Zolla L
    Biochem Pharmacol; 2017 Mar; 127():60-70. PubMed ID: 28017777
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Malate-Aspartate Shuttle Inhibitor Aminooxyacetate Acid Induces Apoptosis and Impairs Energy Metabolism of Both Resting Microglia and LPS-Activated Microglia.
    Chen H; Wang C; Wei X; Ding X; Ying W
    Neurochem Res; 2015 Jun; 40(6):1311-8. PubMed ID: 25998884
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Flux through the malate--aspartate shuttle in perfused rat heart [proceedings].
    Hogg KR; Ottaway JH
    Biochem Soc Trans; 1977; 5(3):709-11. PubMed ID: 902896
    [No Abstract]   [Full Text] [Related]  

  • 46. The nucleotide metabolism in lactate perfused hearts under ischaemic and reperfused conditions.
    de Groot MJ; Coumans WA; van der Vusse GJ
    Mol Cell Biochem; 1992 Dec; 118(1):1-14. PubMed ID: 1488052
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Subcellular distribution of malate-aspartate cycle intermediates during normoxia and anoxia in the heart.
    Wiesner RJ; Kreutzer U; Rösen P; Grieshaber MK
    Biochim Biophys Acta; 1988 Oct; 936(1):114-23. PubMed ID: 2902879
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Magnitude of malate-aspartate reduced nicotinamide adenine dinucleotide shuttle activity in intact respiring tumor cells.
    Greenhouse WV; Lehninger AL
    Cancer Res; 1977 Nov; 37(11):4173-81. PubMed ID: 198130
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The effects of increased heart work on the tricarboxylate cycle and its interactions with glycolysis in the perfused rat heart.
    Neely JR; Denton RM; England PJ; Randle PJ
    Biochem J; 1972 Jun; 128(1):147-59. PubMed ID: 5085551
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Gluconeogenesis in the kidney cortex. Effects of D-malate and amino-oxyacetate.
    Rognstad R; Katz J
    Biochem J; 1970 Feb; 116(3):483-91. PubMed ID: 5435692
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effects of alanine on malate-aspartate shuttle in perfused livers from cold-exposed rats.
    Sugano T; Ohta T; Tarui A; Miyamae Y
    Am J Physiol; 1986 Oct; 251(4 Pt 1):E385-92. PubMed ID: 3766724
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Calcium transport in bovine sperm mitochondria: effect of substrates and phosphate.
    Breitbart H; Wehbie R; Lardy HA
    Biochim Biophys Acta; 1990 Jul; 1026(1):57-63. PubMed ID: 1696124
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Mitochondrial-cytosolic interactions in cardiac tissue: role of the malate-aspartate cycle in the removal of glycolytic NADH from the cytosol.
    Williamson JR; Safer B; LaNoue KF; Smith CM; Walajtys E
    Symp Soc Exp Biol; 1973; 27():241-81. PubMed ID: 4358367
    [No Abstract]   [Full Text] [Related]  

  • 54. The relationship between phosphorylation potential and redox state in the isolated working rabbit heart.
    Laughlin MR; Heineman FW
    J Mol Cell Cardiol; 1994 Dec; 26(12):1525-36. PubMed ID: 7731048
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Regulation of ATP sensitive potassium channel of isolated guinea pig ventricular myocytes by sarcolemmal monocarboxylate transport.
    Coetzee WA
    Cardiovasc Res; 1992 Nov; 26(11):1077-86. PubMed ID: 1291085
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The malate/aspartate shuttle and pyruvate kinase as targets involved in the stimulation of gluconeogenesis by phenylephrine.
    Leverve XM; Verhoeven AJ; Groen AK; Meijer AJ; Tager JM
    Eur J Biochem; 1986 Mar; 155(3):551-6. PubMed ID: 3956499
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Carbohydrate metabolism in isolated, working newborn pig heart.
    Werner JC; Whitman V; Fripp RR; Schuler HG; Morgan HE
    Am J Physiol; 1981 Nov; 241(5):E364-71. PubMed ID: 7304740
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Metabolic fingerprint of ischaemic cardioprotection: importance of the malate-aspartate shuttle.
    Nielsen TT; Støttrup NB; Løfgren B; Bøtker HE
    Cardiovasc Res; 2011 Aug; 91(3):382-91. PubMed ID: 21349875
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Phenethylbiguanide and the inhibition of hepatic gluconeogenesis in the guinea pig.
    Ogata K; Jomain-Baum M; Hanson RW
    Biochem J; 1974 Oct; 144(1):49-57. PubMed ID: 4462575
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The effects of digoxin and dopamine on the oxygen consumption, lactate production and haemodynamic performance of an isolated, perfused, working guinea-pig heart.
    Zannad F; Graham CW; Aronson JK
    Eur J Pharmacol; 1982 Jul; 81(2):263-71. PubMed ID: 7117376
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.