These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 739997)

  • 1. [Comparative theoretic analysis of an open reaction S1 goes to and comes from S2 E(R,T) in which the oligomeric enzyme E(R,T) is isosterically or allosterically activated by the product S2].
    Sel'kov EE; Dynnik SN
    Mol Biol (Mosk); 1978; 12(5):1122-38. PubMed ID: 739997
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Substrate inhibition as a cause of oscillations in an open irreversible enzymic reaction S1 + S2 in the presence of E(R,T) leads to S1' + S2'. A mathematical model].
    Kaimachnikov NP; Sel'kov EE
    Biokhimiia; 1977 Apr; 42(4):639-46. PubMed ID: 870087
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Hysteresis, multiplicity of stationary states and auto-oscillations in the reversible flow-through reaction].
    Sel'kov EE; Dynnik SN
    Biofizika; 1976; 21(2):214-9. PubMed ID: 1268265
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Regulatory reversible enzymic reactions. Theoretical analysis].
    Popova SV; Sel'kov EE
    Mol Biol (Mosk); 1978; 12(5):1139-51. PubMed ID: 739998
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Description of the kinetics of the two substrate reactions S1+S2 goes to and comes from S3+S4 by a generalized Monod, Wyman, Changeux model].
    Popova SV; Sel'kov EE
    Mol Biol (Mosk); 1979; 13(1):129-39. PubMed ID: 156878
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Generalization of the Monod-Wyman-Changeux model for the case of multisubstrate reactions].
    Popova SV; Sel'kov EE
    Mol Biol (Mosk); 1976; 10(5):1116-26. PubMed ID: 1053074
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ATP sulfurylase from filamentous fungi: which sulfonucleotide is the true allosteric effector?
    MacRae I; Segel IH
    Arch Biochem Biophys; 1997 Jan; 337(1):17-26. PubMed ID: 8990263
    [TBL] [Abstract][Full Text] [Related]  

  • 8. T-state inhibitors of E. coli aspartate transcarbamoylase that prevent the allosteric transition.
    Heng S; Stieglitz KA; Eldo J; Xia J; Cardia JP; Kantrowitz ER
    Biochemistry; 2006 Aug; 45(33):10062-71. PubMed ID: 16906764
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A kinetic analysis of the nucleotide-induced allosteric transitions of GroEL.
    Cliff MJ; Kad NM; Hay N; Lund PA; Webb MR; Burston SG; Clarke AR
    J Mol Biol; 1999 Oct; 293(3):667-84. PubMed ID: 10543958
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Deviations from hyperbolic kinetics in slowly dissociating allosteric enzyme systems].
    Kuranov BI; Dorozhko AI; Kagan ZS; Iakovlev VA
    Biokhimiia; 1975; 40(4):793-801. PubMed ID: 1203389
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Kinetic manifestations of slow isomerization of allosteric enzyme for the model of Monod, Wyman and Changeux].
    Kurganov BI; Dorozhko AI; Kagan ZS; Yakovlev VA
    Biokhimiia; 1975; 40(3):611-21. PubMed ID: 1203376
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Enzyme inactivation in the reaction process. Regulatory role].
    Varfolomeev SD
    Biokhimiia; 1984 May; 49(5):723-35. PubMed ID: 6743701
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence for two different mechanisms triggering the change in quaternary structure of the allosteric enzyme, glucosamine-6-phosphate deaminase.
    Bustos-Jaimes I; Ramírez-Costa M; De Anda-Aguilar L; Hinojosa-Ocaña P; Calcagno ML
    Biochemistry; 2005 Feb; 44(4):1127-35. PubMed ID: 15667206
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the role of the conformational flexibility of the active-site lid on the allosteric kinetics of glucosamine-6-phosphate deaminase.
    Bustos-Jaimes I; Sosa-Peinado A; Rudiño-Piñera E; Horjales E; Calcagno ML
    J Mol Biol; 2002 May; 319(1):183-9. PubMed ID: 12051945
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Allosteric regulation in Pseudomonas aeruginosa catabolic ornithine carbamoyltransferase revisited: association of concerted homotropic cooperative interactions and local heterotropic effects.
    Tricot C; Villeret V; Sainz G; Dideberg O; Stalon V
    J Mol Biol; 1998 Oct; 283(3):695-704. PubMed ID: 9784377
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Allosteric regulation of biosynthetic threonine deaminase from Escherichia coli: effects of isoleucine and valine on active-site ligand binding and catalysis.
    Eisenstein E
    Arch Biochem Biophys; 1995 Jan; 316(1):311-8. PubMed ID: 7840631
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [The Ising model for the description of allosteric kinetics of polymeric enzymes].
    Cherepanov DA
    Biofizika; 1987; 32(4):592-6. PubMed ID: 3663722
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Allosteric inhibition via R-state destabilization in ATP sulfurylase from Penicillium chrysogenum.
    MacRae IJ; Segel IH; Fisher AJ
    Nat Struct Biol; 2002 Dec; 9(12):945-9. PubMed ID: 12426581
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dissociation of enzyme oligomers: a mechanism for allosteric regulation.
    Traut TW
    Crit Rev Biochem Mol Biol; 1994; 29(2):125-63. PubMed ID: 8026214
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Analysis of a simple open biochemical reaction S leads to P by means of E interacting with an enzyme-producing system].
    Sel'kov EE; Nazarenko VG
    Biofizika; 1980; 25(6):1006-10. PubMed ID: 7448210
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.