BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 7400118)

  • 1. Reduction of methemoglobin through flavin at the physiological concentration by NADPH-flavin reductase of human erythrocytes.
    Yubisui T; Takeshita M; Yoneyama Y
    J Biochem; 1980 Jun; 87(6):1715-20. PubMed ID: 7400118
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enzymatic reduction of hemoglobins M Milwaukee-1 and M Saskatoon by NADH-cytochrome b5 reductase and NADPH-flavin reductase purified from human erythrocytes.
    Nagai M; Yubisui T; Yoneyama Y
    J Biol Chem; 1980 May; 255(10):4599-602. PubMed ID: 7372598
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NADPH-flavin reductase in human erythrocytes and the reduction of methemoglobin through flavin by the enzyme.
    Yubisui T; Matsuki T; Tanishima K; Takeshita M; Yoneyama Y
    Biochem Biophys Res Commun; 1977 May; 76(1):174-82. PubMed ID: 869945
    [No Abstract]   [Full Text] [Related]  

  • 4. Effects of hemolysate concentration, ionic strength and cytochrome b5 concentration on the rate of methemoglobin reduction in hemolysates of human erythrocytes.
    Sannes LJ; Hultquist DE
    Biochim Biophys Acta; 1978 Dec; 544(3):547-54. PubMed ID: 31928
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Properties of methemoglobin reductase and kinetic study of methemoglobin reduction.
    Kuma F
    J Biol Chem; 1981 Jun; 256(11):5518-23. PubMed ID: 7240153
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nicotinamide-adenine dinucleotide-methemoglobin reductase activity in erythrocytes from cats.
    Baker DC; Gaunt SD
    Am J Vet Res; 1985 Jun; 46(6):1354-5. PubMed ID: 4026013
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Studies on methemoglobin reductase. Immunochemical similarity of soluble methemoglobin reductase and cytochrome b5 of human erythrocytes with NADH-cytochrome b5 reductase and cytochrome b5 of rat liver microsomes.
    Kuma F; Prough RA; Masters BS
    Arch Biochem Biophys; 1976 Feb; 172(2):600-7. PubMed ID: 1259422
    [No Abstract]   [Full Text] [Related]  

  • 8. [Steady-state dependence of the methemoglobin reduction rate on its concentration in intact human erythrocytes].
    Ataullakhanov FI; Vitvitskiĭ VM; Zhabotinskiĭ AM; Kiiatkin AB; Pichugin AV
    Biokhimiia; 1984 Feb; 49(2):193-7. PubMed ID: 6424728
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Catalysis of methemoglobin reduction.
    Hultquist DE; Sannes LJ; Juckett DA
    Curr Top Cell Regul; 1984; 24():287-300. PubMed ID: 6499522
    [No Abstract]   [Full Text] [Related]  

  • 10. [A method of determining NADH-methemoglobin reductase activity using amino derivatives of o-benzoquinone].
    Lunets EF; Speranskaia ECh; Speranskiĭ SD
    Vopr Med Khim; 1987; 33(3):126-8. PubMed ID: 3630008
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relationship between the pentose phosphate shunt and methemoglobin reductase activity in human erythrocytes: Effect of aging on methemoglobin reductase activity.
    Ioppolo C; Currell DL; Civalleri L; Antonini E
    Experientia; 1979 Aug; 35(8):1112-3. PubMed ID: 38988
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Membrane-bound cytochrome b5 reductase (methemoglobin reductase) in human erythrocytes. Study in normal and methemoglobinemic subjects.
    Choury D; Leroux A; Kaplan JC
    J Clin Invest; 1981 Jan; 67(1):149-55. PubMed ID: 7451647
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stopped flow studies on the nonenzymatic reduction of methemoglobin by reduced flavin mononucleotide.
    Yubisui T; Matsukawa S; Yoneyama Y
    J Biol Chem; 1980 Dec; 255(24):11694-7. PubMed ID: 7440566
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of NADPH and the NADPH-dependent methemoglobin reductase in the hydroxylase activity of human erythrocytes.
    Blisard KS; Mieyal JJ
    Arch Biochem Biophys; 1981 Sep; 210(2):762-9. PubMed ID: 6795993
    [No Abstract]   [Full Text] [Related]  

  • 15. Separate roles for FMN and FAD in catalysis by liver microsomal NADPH-cytochrome P-450 reductase.
    Vermilion JL; Ballou DP; Massey V; Coon MJ
    J Biol Chem; 1981 Jan; 256(1):266-77. PubMed ID: 6778861
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of the purified NADPH-flavin reductase of human erythrocytes.
    Yubisui T; Matsuki T; Takeshita M; Yoneyama Y
    J Biochem; 1979 Mar; 85(3):719-28. PubMed ID: 34598
    [No Abstract]   [Full Text] [Related]  

  • 17. Quantitation of FAD-dependent cytochrome P450 reductase activity by photoreduction.
    Hodgson AV; Strobel HW
    Anal Biochem; 1996 Dec; 243(1):154-7. PubMed ID: 8954538
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impaired erythrocyte methemoglobin reduction in sickle cell disease: dependence of methemoglobin reduction on reduced nicotinamide adenine dinucleotide content.
    Zerez CR; Lachant NA; Tanaka KR
    Blood; 1990 Sep; 76(5):1008-14. PubMed ID: 2393709
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Methemoglobin reductases in erythrocytes].
    Yubisui T
    Seikagaku; 1982; 54(11):1233-54. PubMed ID: 6762398
    [No Abstract]   [Full Text] [Related]  

  • 20. Kinetic studies on methemoglobin reduction by human red cell NADH cytochrome b5 reductase.
    Tomoda A; Yubisui T; Tsuji A; Yoneyama Y
    J Biol Chem; 1979 Apr; 254(8):3119-23. PubMed ID: 429336
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.