These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 740032)

  • 41. Studies on the mechanism of action of channel-forming colicins using artificial membranes.
    Davidson VL; Brunden KR; Cramer WA; Cohen FS
    J Membr Biol; 1984; 79(2):105-18. PubMed ID: 6086931
    [No Abstract]   [Full Text] [Related]  

  • 42. The membrane channel-forming bacteriocidal protein, colicin El.
    Cramer WA; Dankert JR; Uratani Y
    Biochim Biophys Acta; 1983 Mar; 737(1):173-93. PubMed ID: 6297581
    [No Abstract]   [Full Text] [Related]  

  • 43. Gating processes of channels induced by colicin A, its C-terminal fragment and colicin E1 in planar lipid bilayers.
    Collarini M; Amblard G; Lazdunski C; Pattus F
    Eur Biophys J; 1987; 14(3):147-53. PubMed ID: 3830093
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Mode of action of yeast killer toxins: channel formation in lipid bilayer membranes.
    Kagan BL
    Nature; 1983 Apr; 302(5910):709-11. PubMed ID: 6300695
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Structure-function relationships for a voltage-dependent ion channel: properties of COOH-terminal fragments of colicin E1.
    Cleveland MV; Slatin S; Finkelstein A; Levinthal C
    Proc Natl Acad Sci U S A; 1983 Jun; 80(12):3706-10. PubMed ID: 6304732
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effects of anionic lipid and ion concentrations on the topology and segmental mobility of colicin Ia channel domain from solid-state NMR.
    Yao XL; Hong M
    Biochemistry; 2006 Jan; 45(1):289-95. PubMed ID: 16388605
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The domain structure of the ion channel-forming protein colicin Ia.
    Ghosh P; Mel SF; Stroud RM
    Nat Struct Biol; 1994 Sep; 1(9):597-604. PubMed ID: 7543362
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Determination of the molecularity of the colicin E1 channel by stopped-flow ion flux kinetics.
    Bruggemann EP; Kayalar C
    Proc Natl Acad Sci U S A; 1986 Jun; 83(12):4273-6. PubMed ID: 2424023
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The Colicin E1 TolC Box: Identification of a Domain Required for Colicin E1 Cytotoxicity and TolC Binding.
    Jakes KS
    J Bacteriol; 2017 Jan; 199(1):. PubMed ID: 27795317
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Colicin crystal structures: pathways and mechanisms for colicin insertion into membranes.
    Zakharov SD; Cramer WA
    Biochim Biophys Acta; 2002 Oct; 1565(2):333-46. PubMed ID: 12409205
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Reduction of membrane potential, an immediate effect of colicin K.
    Weiss MJ; Luria SE
    Proc Natl Acad Sci U S A; 1978 May; 75(5):2483-7. PubMed ID: 27788
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Identification of a voltage-responsive segment of the potential-gated colicin E1 ion channel.
    Merrill AR; Cramer WA
    Biochemistry; 1990 Sep; 29(37):8529-34. PubMed ID: 1702993
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Voltage-dependent block of anthrax toxin channels in planar phospholipid bilayer membranes by symmetric tetraalkylammonium ions. Single-channel analysis.
    Blaustein RO; Lea EJ; Finkelstein A
    J Gen Physiol; 1990 Nov; 96(5):921-42. PubMed ID: 1704046
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Mechanism of blockage of amphotericin B channels in a lipid bilayer.
    Borisova MP; Ermishkin LN; Silberstein AY
    Biochim Biophys Acta; 1979 Jun; 553(3):450-9. PubMed ID: 454595
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Colicin U from Shigella boydii Forms Voltage-Dependent Pores.
    Dolejšová T; Sokol A; Bosák J; Šmajs D; Konopásek I; Mikušová G; Fišer R
    J Bacteriol; 2019 Dec; 201(24):. PubMed ID: 31548276
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Changes in E. coli cell envelope structure caused by uncouplers of active transport and colicin E1.
    Helgerson SL; Cramer WA
    J Supramol Struct; 1976; 5(3):291-308. PubMed ID: 828690
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Colicin N and its thermolytic fragment induce phospholipid vesicle fusion.
    Massotte D; Pattus F
    FEBS Lett; 1989 Nov; 257(2):447-50. PubMed ID: 2684693
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Dependence of the activity of colicin E1 in artificial membrane vesicles on pH, membrane potential, and vesicle size.
    Davidson VL; Cramer WA; Bishop LJ; Brunden KR
    J Biol Chem; 1984 Jan; 259(1):594-600. PubMed ID: 6706954
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Protein-fluctuation-induced water-pore formation in ion channel voltage-sensor translocation across a lipid bilayer membrane.
    Rajapaksha SP; Pal N; Zheng D; Lu HP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015; 92(5):052719. PubMed ID: 26651735
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Dynamic properties of membrane proteins: reversible insertion into membrane vesicles of a colicin E1 channel-forming peptide.
    Xu S; Cramer WA; Peterson AA; Hermodson M; Montecucco C
    Proc Natl Acad Sci U S A; 1988 Oct; 85(20):7531-5. PubMed ID: 2459708
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.