These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 7401404)

  • 1. The high affinity choline uptake system with respect to the muscarinic receptors using a synaptosomal fraction abundant in presynaptic membranes.
    Takano Y; Kohjimoto Y; Kamiya H
    Jpn J Pharmacol; 1980 Feb; 30(1):119-22. PubMed ID: 7401404
    [No Abstract]   [Full Text] [Related]  

  • 2. Mechanism of acetylcholine release: possible involvement of presynaptic muscarinic receptors in regulation of acetylcholine release and protein phosphorylation.
    Michaelson DM; Avissar S; Kloog Y; Sokolovsky M
    Proc Natl Acad Sci U S A; 1979 Dec; 76(12):6336-40. PubMed ID: 293724
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calcium and the muscarinic synaptosomal phospholipid labeling effect.
    Fisher SK; Agranoff BW
    J Neurochem; 1980 May; 34(5):1231-40. PubMed ID: 6768845
    [No Abstract]   [Full Text] [Related]  

  • 4. Cholinergic muscarinic receptor in synaptosomal membranes. Heterogeneity of binding sites for L-[3H]quinuclidinyl benzilate.
    Aguilar JS; Salas PJ; De Robertis E
    Mol Pharmacol; 1982 Sep; 22(2):304-9. PubMed ID: 7144732
    [No Abstract]   [Full Text] [Related]  

  • 5. Protection by atropine of the inhibition caused by Triton X-100 on central muscarinic receptors.
    Aguilar JS; Criado M; De Robertis E
    Eur J Pharmacol; 1980 May; 63(4):251-7. PubMed ID: 7389810
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distinct muscarinic receptor subtypes differentially modulate acetylcholine release from corticocerebral synaptosomes.
    Pittel Z; Heldman E; Rubinstein R; Cohen S
    J Neurochem; 1990 Aug; 55(2):665-72. PubMed ID: 1695243
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nicotinic autoreceptors mediating enhancement of acetylcholine release become operative in conditions of "impaired" cholinergic presynaptic function.
    Marchi M; Raiteri M
    J Neurochem; 1996 Nov; 67(5):1974-81. PubMed ID: 8863503
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Binding of [3H]hemicholinium-3 to the high-affinity choline transporter in electric organ synaptosomal membranes.
    O'Regan S
    J Neurochem; 1988 Dec; 51(6):1682-8. PubMed ID: 3183657
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Affinity, efficacy, and stereoselectivity of oxotremorine analogues for muscarinic receptors in the isolated guinea pig ileum.
    Ringdahl B; Jenden DJ
    Mol Pharmacol; 1983 Jan; 23(1):17-25. PubMed ID: 6135142
    [No Abstract]   [Full Text] [Related]  

  • 10. Correlation between cholinesterase inhibition and reduction in muscarinic receptors and choline uptake by repeated diisopropylfluorophosphate administration: antagonism by physostigmine and atropine.
    Yamada S; Isogai M; Okudaira H; Hayashi E
    J Pharmacol Exp Ther; 1983 Aug; 226(2):519-25. PubMed ID: 6875862
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Depolarisation-induced changes in muscarinic cholinergic receptors in synaptosomes.
    Luqmani YA; Bradford HF; Birdsall NJ; Hulme EC
    Nature; 1979 Feb; 277(5696):481-3. PubMed ID: 763331
    [No Abstract]   [Full Text] [Related]  

  • 12. Regional adaptation of muscarinic receptors and choline uptake in brain following repeated administration of diisopropylfluorophosphate and atropine.
    Yamada S; Isogai M; Okudaira H; Hayashi E
    Brain Res; 1983 Jun; 268(2):315-20. PubMed ID: 6871685
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of the presynaptic muscarinic receptor in synaptosomes of Torpedo electric organ by means of kinetic and equilibrium binding studies.
    Kloog Y; Michaelson DM; Sokolovsky M
    Brain Res; 1980 Jul; 194(1):97-115. PubMed ID: 7378848
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Presynaptic muscarinic receptors and the release of acetylcholine from cerebrocortical prisms: roles of Ca2+ and K+ concentrations.
    Dolezal V; Tucek S
    Naunyn Schmiedebergs Arch Pharmacol; 1993 Sep; 348(3):228-33. PubMed ID: 8232600
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Properties of Torpedo electric organ muscarinic receptors.
    Dowdall MJ; Golds PR; Strange PG
    J Physiol (Paris); 1982; 78(4):379-84. PubMed ID: 7182484
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pirenzepine does not discriminate between pre- and postsynaptic muscarine receptors in the guinea-pig small intestine.
    Halim S; Kilbinger H; Wessler I
    Scand J Gastroenterol Suppl; 1982; 72():87-94. PubMed ID: 6958001
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes in synaptosomal high affinity choline uptake following electrical stimulation of guinea-pig cortical slices: effect of atropine and physostigmine.
    Antonelli T; Beani L; Bianchi C; Pedata F; Pepeu G
    Br J Pharmacol; 1981 Nov; 74(3):525-31. PubMed ID: 7296161
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cholinergic modulation of the release of [3H]acetylcholine from synaptosomes of the myenteric plexus.
    Briggs CA; Cooper JR
    J Neurochem; 1982 Feb; 38(2):501-8. PubMed ID: 7108553
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contraction and [3H]QNB binding in collagenase isolated fundic smooth muscle cells.
    Seidel ER; Johnson LR
    Am J Physiol; 1983 Aug; 245(2):G270-6. PubMed ID: 6881350
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of nucleus basalis lesions on the muscarinic and nicotinic modulation of [3H]acetylcholine release in the rat cerebral cortex.
    Meyer EM; Arendash GW; Judkins JH; Ying L; Wade C; Kem WR
    J Neurochem; 1987 Dec; 49(6):1758-62. PubMed ID: 3681294
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.