These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 7401630)
81. THE HISTOLOGY OF EQUINE ENCEPHALOMYELITIS. Hurst EW J Exp Med; 1934 Apr; 59(5):529-42. PubMed ID: 19870264 [TBL] [Abstract][Full Text] [Related]
82. [Background of literature search. The use of literature in the process of my experimental study]. Hashimoto H Kango Kenkyu; 1986; 19(3):253-8. PubMed ID: 3534390 [No Abstract] [Full Text] [Related]
83. [Studies on the prophylaxis of experimental allergic encephalomyelitis]. ZEMAN W Dtsch Z Nervenheilkd; 1958; 177(5):451-7. PubMed ID: 13547864 [No Abstract] [Full Text] [Related]
84. [Studies on proteolytic enzymes of the brain in experimental allergic encephalomyelitis]. Diessner H; Schmidt RM Wien Z Nervenheilkd Grenzgeb; 1970; 28(4):306-12. PubMed ID: 4250696 [No Abstract] [Full Text] [Related]
85. [Neuropathologic findings in experimental Vioform poisoning in white mice]. PĆ¼schner H; Fankhauser R Schweiz Arch Tierheilkd; 1969 Jul; 111(7):371-9. PubMed ID: 4243706 [No Abstract] [Full Text] [Related]
86. Experimental allergic encephalomyelitis and its immunochemistry. COLOVER J Proc R Soc Med; 1958 Sep; 51(9):745-7. PubMed ID: 13591295 [No Abstract] [Full Text] [Related]
87. The role of proteolytic enzymes in demyelination in experimental allergic encephalomyelitis. Smith ME Neurochem Res; 1977 Jun; 2(3):233-46. PubMed ID: 24272051 [No Abstract] [Full Text] [Related]
88. SPONTANEOUS ENCEPHALOMYELITIS OF MICE--A NEW VIRUS DISEASE. Theiler M Science; 1934 Aug; 80(2066):122. PubMed ID: 17750712 [No Abstract] [Full Text] [Related]
89. Multiple Sclerosis and Experimental Allergic Encephalomyelitis. Pahan K J Clin Cell Immunol; 2013 Sep; 4():. PubMed ID: 24478934 [No Abstract] [Full Text] [Related]
90. PART 2: Mouse models for multiple sclerosis research. Ramasamy R; Smith PP Neurourol Urodyn; 2021 Apr; 40(4):958-967. PubMed ID: 33739481 [TBL] [Abstract][Full Text] [Related]
94. Site-specific chemokine expression regulates central nervous system inflammation and determines clinical phenotype in autoimmune encephalomyelitis. Stoolman JS; Duncker PC; Huber AK; Segal BM J Immunol; 2014 Jul; 193(2):564-70. PubMed ID: 24928987 [TBL] [Abstract][Full Text] [Related]
95. Sex differences in autoimmune diseases. Voskuhl R Biol Sex Differ; 2011 Jan; 2(1):1. PubMed ID: 21208397 [TBL] [Abstract][Full Text] [Related]
96. Reactive astrocytes form scar-like perivascular barriers to leukocytes during adaptive immune inflammation of the CNS. Voskuhl RR; Peterson RS; Song B; Ao Y; Morales LB; Tiwari-Woodruff S; Sofroniew MV J Neurosci; 2009 Sep; 29(37):11511-22. PubMed ID: 19759299 [TBL] [Abstract][Full Text] [Related]
97. Enhancing the ability of experimental autoimmune encephalomyelitis to serve as a more rigorous model of multiple sclerosis through refinement of the experimental design. Emerson MR; Gallagher RJ; Marquis JG; LeVine SM Comp Med; 2009 Apr; 59(2):112-28. PubMed ID: 19389303 [TBL] [Abstract][Full Text] [Related]
98. In vitro and in vivo pharmacological models to assess demyelination and remyelination. Merrill JE Neuropsychopharmacology; 2009 Jan; 34(1):55-73. PubMed ID: 18800062 [TBL] [Abstract][Full Text] [Related]
99. Role of B:T cell ratio in suppression of clinical signs: a model for silent MS. Peterson LK; Tsunoda I; Libbey JE; Fujinami RS Exp Mol Pathol; 2008 Aug; 85(1):28-39. PubMed ID: 18486939 [TBL] [Abstract][Full Text] [Related]
100. A tumor necrosis factor receptor 1-dependent conversation between central nervous system-specific T cells and the central nervous system is required for inflammatory infiltration of the spinal cord. Gimenez MA; Sim J; Archambault AS; Klein RS; Russell JH Am J Pathol; 2006 Apr; 168(4):1200-9. PubMed ID: 16565495 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]