BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 7402937)

  • 1. Description of a simple model for the study of bone calcium metabolism.
    Pedroli G; Roncari G; Rapisardi L; Conte L
    Nuklearmedizin; 1980 Feb; 19(1):11-5. PubMed ID: 7402937
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling bone mineral metabolism, with special reference to calcium and lead.
    O'Flaherty EJ
    Neurotoxicology; 1992; 13(4):789-97. PubMed ID: 1302305
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Chamber analysis and study of the metabolism of strontium-85 in osteogenesis imperfecta. I. Chamber model of strontium-calcium metabolism in humans].
    Likhtarev IA; Krasnoshchekova GP; Dobroskok AI
    Med Radiol (Mosk); 1972 Jan; 17(1):70-6. PubMed ID: 5029608
    [No Abstract]   [Full Text] [Related]  

  • 4. Simple instruction of the metabolic balance study.
    Krcek L; Urbánek E; Kuman M; Rezler D
    Acta Univ Carol Med (Praha); 1980; 26(5-6):293-302. PubMed ID: 7347127
    [No Abstract]   [Full Text] [Related]  

  • 5. [Accumulation and elimination of strontium 85 in persons with normal calcium metabolism and with bone pathology].
    Likhtarev IA; Krasnoshchekova GP; Dobroskok AI; Likhtareva TM; Sinitskiĭ IuF
    Med Radiol (Mosk); 1972 Jan; 17(1):76-80. PubMed ID: 5029609
    [No Abstract]   [Full Text] [Related]  

  • 6. A new method for calculating the accretion rate of bone calcium and some observations on the suitability of strontium-85 as a tracer for bone calcium.
    Reeve J; Wootton R; Hesp B
    Calcif Tissue Res; 1976 Apr; (2):121-35. PubMed ID: 1260483
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new tracer method for the calculation of rates of bone formation and breakdown in osteoporosis and other generalised skeletal disorders.
    Reeve J; Hesp R; Wootton R
    Calcif Tissue Res; 1976 Dec; 22(2):191-206. PubMed ID: 1000353
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Formation of dose rate from strontium-90 in a growing organism].
    Rasin IM; Sarapul'tsev AI; Panteleev LI
    Radiobiologiia; 1973; 13(3):469-71. PubMed ID: 4771891
    [No Abstract]   [Full Text] [Related]  

  • 9. [Sr90 content and calcium turnover in bovine bones].
    D'Arca Simonetti A; Annicchiarico Sebastiani L; Nugari MP
    Nuovi Ann Ig Microbiol; 1979; 29(4):329-35. PubMed ID: 554118
    [No Abstract]   [Full Text] [Related]  

  • 10. [Use of Sr85 for the evaluation of mineral metabolism in osteoarticular tuberculosis, osteomyelitis and rheumatoid polyarthritis].
    Likhtarev IA; Shakirov EA; Ginzburg VS; Saliev TS
    Med Radiol (Mosk); 1976 Apr; 21(4):19-25. PubMed ID: 1021664
    [No Abstract]   [Full Text] [Related]  

  • 11. Tracer studies of bone metabolism in man using stable strontium and Ca47.
    FRASER R; HARRISON M; JONES E
    Stud Med; 1960; Suppl 45():45-9. PubMed ID: 13701525
    [No Abstract]   [Full Text] [Related]  

  • 12. Bone-seeking isotopes in the study of calcium metabolism and bone pathophysiology. Method may provide solutions to problems of bone mineral metabolism and bone formation.
    Tamvakopoulos SK
    R I Med J; 1967 Nov; 50(11):757-9 passim. PubMed ID: 5234974
    [No Abstract]   [Full Text] [Related]  

  • 13. A model-independent comparison of the rates of uptake and short term retention of 47Ca and 85Sr by the skeleton.
    Reeve J; Hesp R
    Calcif Tissue Res; 1976 Dec; 22(2):183-9. PubMed ID: 1000352
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Labeling the human skeleton with 41Ca to assess changes in bone calcium metabolism.
    Denk E; Hillegonds D; Vogel J; Synal A; Geppert C; Wendt K; Fattinger K; Hennessy C; Berglund M; Hurrell RF; Walczyk T
    Anal Bioanal Chem; 2006 Nov; 386(6):1587-602. PubMed ID: 17033771
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of two compartmental models for describing receptor ligand kinetics and receptor availability in multiple injection PET studies.
    Morris ED; Alpert NM; Fischman AJ
    J Cereb Blood Flow Metab; 1996 Sep; 16(5):841-53. PubMed ID: 8784229
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A physiologically based pharmacokinetic model for fluoride uptake by bone.
    Rao HV; Beliles RP; Whitford GM; Turner CH
    Regul Toxicol Pharmacol; 1995 Aug; 22(1):30-42. PubMed ID: 7494900
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measurement of bone turnover on the basis of a continuously expanding exchangeable calcium pool.
    Burkinshaw L; Marshall DH; Nordin BE; Oxby CB; Spiers FW; Young MM
    Br J Radiol; 1968 Dec; 41(492):954. PubMed ID: 5722309
    [No Abstract]   [Full Text] [Related]  

  • 18. A 3-dimensional computer model to simulate trabecular bone metabolism.
    Ruimerman R; Van Rietbergen B; Hilbers P; Huiskes R
    Biorheology; 2003; 40(1-3):315-20. PubMed ID: 12454421
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vitamin D receptor gene BsmI-polymorphism in Finnish premenopausal and postmenopausal women: its association with bone mineral density, markers of bone turnover, and intestinal calcium absorption, with adjustment for lifestyle factors.
    Laaksonen M; Kärkkäinen M; Outila T; Vanninen T; Ray C; Lamberg-Allardt C
    J Bone Miner Metab; 2002; 20(6):383-90. PubMed ID: 12434167
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A model for calcium kinetics based on random walk statistics.
    Anderson J; Osborn SB; Tomlinson RW; Wise ME
    Br J Radiol; 1971 Mar; 44(519):233. PubMed ID: 5548822
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.