These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

44 related articles for article (PubMed ID: 7403154)

  • 1. Effects of storage on vasospastic activity of canine blood and blood-CSF mixtures.
    Okwuasaba FK; Weir BK; Cook DA
    Proc West Pharmacol Soc; 1980; 23():331-4. PubMed ID: 7403154
    [No Abstract]   [Full Text] [Related]  

  • 2. Interactions of various spasmogens and blood products on canine basilar artery.
    Krueger CA; Cook DA
    Proc West Pharmacol Soc; 1983; 26():337-9. PubMed ID: 6577474
    [No Abstract]   [Full Text] [Related]  

  • 3. Responsiveness of isolated cerebral arteries to various pharmacologic agents and to transmural electrical stimulation.
    Gintautas J; Kraynack BJ; Racz GB
    Proc West Pharmacol Soc; 1980; 23():63-7. PubMed ID: 7403167
    [No Abstract]   [Full Text] [Related]  

  • 4. Nicotine exposure, mimicked smoking, directly and indirectly enhanced protein kinase C activity in isolated canine basilar artery, resulting in enhancement of arterial contraction.
    Koide M; Nishizawa S; Yamamoto S; Yamaguchi M; Namba H; Terakawa S
    J Cereb Blood Flow Metab; 2005 Mar; 25(3):292-301. PubMed ID: 15647745
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heterogeneous responses of canine basilar and middle cerebral arteries to serotonin at normal and high CO2 tension.
    Tsukui A; Fukuda S; Shimoji K
    Experientia; 1992 Dec; 48(11-12):1118-21. PubMed ID: 1473576
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cytotoxic effects of bloody cerebrospinal fluid on cerebral endothelial cells in culture.
    Foley PL; Takenaka K; Kassell NF; Lee KS
    J Neurosurg; 1994 Jul; 81(1):87-92. PubMed ID: 8207531
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cerebral arterial spasm. 2. Experimental evaluation of mechanical and humoral factors in pathogenesis.
    Kapp J; Mahaley MS; Odom GL
    J Neurosurg; 1968 Oct; 29(4):339-49. PubMed ID: 4301729
    [No Abstract]   [Full Text] [Related]  

  • 8. Identification, characterization, and functional role of phosphodiesterase type IV in cerebral vessels: effects of selective phosphodiesterase inhibitors.
    Willette RN; Shiloh AO; Sauermelch CF; Sulpizio A; Michell MP; Cieslinski LB; Torphy TJ; Ohlstein EH
    J Cereb Blood Flow Metab; 1997 Feb; 17(2):210-9. PubMed ID: 9040501
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Hemodynamic and cerebrospinal fluid dynamic shifts in experimental stimulation and constriction of the vertebral artery].
    Bogdanov EI; Popelianskiĭ AIa
    Zh Nevropatol Psikhiatr Im S S Korsakova; 1980; 80(1):49-52. PubMed ID: 7355649
    [No Abstract]   [Full Text] [Related]  

  • 10. Effects of endothelin-1 on the myogenic contraction of canine cerebral artery in response to quick stretch.
    Tanaka Y; Shigenobu K; Nakayama K
    Res Commun Mol Pathol Pharmacol; 2001 Jul; 109(1-2):95-101. PubMed ID: 11458989
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of acute hyperkalaemia on the blood-c.s.f. potential difference.
    Cameron IR; Kleeman CR
    J Physiol; 1970 Apr; 207(2):68P-69P. PubMed ID: 5511144
    [No Abstract]   [Full Text] [Related]  

  • 12. CSF-blood potential in cats and its modification by sodium gammahydroxybutyrate.
    Finn H; Kao FF; Mei SS; Harmel MH
    Arch Int Pharmacodyn Ther; 1968 Dec; 176(2):319-25. PubMed ID: 5715408
    [No Abstract]   [Full Text] [Related]  

  • 13. The effect of acute hyperkalaemia on the c.s.f.-blood potential difference and the control of c.s.f. pH.
    Cameron IR; Caronna J; Miller R
    J Physiol; 1973 Jul; 232(2):102P-103P. PubMed ID: 4727076
    [No Abstract]   [Full Text] [Related]  

  • 14. Modulation of extraluminally induced vasoconstrictions by endothelium-derived nitric oxide in the canine basilar artery.
    Minato H; Hashizume M; Masuda Y; Hosoki K
    Arzneimittelforschung; 1995 Jun; 45(6):675-8. PubMed ID: 7544129
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cerebral artery selective inhibition of protein kinase c-mediated contraction by hns-32, a novel azulene-1-carboxamidine derivative.
    Noguchi K; Saitoh M; Nakazawa T; Tanaka H; Tanaka Y; Shigenobu K
    Res Commun Mol Pathol Pharmacol; 2000; 107(1-2):45-54. PubMed ID: 11334370
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contractile responses to reactive oxygen species in the canine basilar artery in vitro: selective inhibitory effect of MCI-186, a new hydroxyl radical scavenger.
    Tosaka M; Hashiba Y; Saito N; Imai H; Shimizu T; Sasaki T
    Acta Neurochir (Wien); 2002 Dec; 144(12):1305-10; discussion 1310. PubMed ID: 12478342
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calcium antagonistic vasodilator mechanisms of brovincamine fumarate studied in canine cerebral artery.
    Tanaka Y; Morimoto K; Ishii K; Nakayama K
    Arzneimittelforschung; 1994 Jul; 44(7):803-8. PubMed ID: 7945512
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Further physiological observations during induced basilar artery spasm in cats and dogs.
    Stasikowski J; Friedman H; Kapp JP; Mahaley MS
    J Surg Res; 1970 Jan; 10(1):47-53. PubMed ID: 5410325
    [No Abstract]   [Full Text] [Related]  

  • 19. Vasodilator effects on canine basilar artery induced by intracisternal interleukin-1 beta.
    Osuka K; Suzuki Y; Watanabe Y; Dogan A; Takayasu M; Shibuya M; Yoshida J
    J Cereb Blood Flow Metab; 1997 Dec; 17(12):1337-45. PubMed ID: 9397033
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preserved BK channel function in vasospastic myocytes from a dog model of subarachnoid hemorrhage.
    Jahromi BS; Aihara Y; Ai J; Zhang ZD; Weyer G; Nikitina E; Yassari R; Houamed KM; Macdonald RL
    J Vasc Res; 2008; 45(5):402-15. PubMed ID: 18401179
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.