These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 7405572)

  • 41. Magnetic stimuli applied over motor and visual cortex: influence of coil position and field polarity on motor responses, phosphenes, and eye movements.
    Meyer BU; Diehl R; Steinmetz H; Britton TC; Benecke R
    Electroencephalogr Clin Neurophysiol Suppl; 1991; 43():121-34. PubMed ID: 1773752
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Contrasting neuronal activity in the supplementary and frontal eye fields during temporal organization of multiple saccades.
    Isoda M; Tanji J
    J Neurophysiol; 2003 Nov; 90(5):3054-65. PubMed ID: 12904333
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Periodic alternating nystagmus of peripheral vestibular origin.
    Kim SH; Chung WK; Kim BG; Hwang CS; Kim MJ; Lee WS
    Laryngoscope; 2014 Apr; 124(4):980-3. PubMed ID: 23945904
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [How useful is the intersaccadic interval analysis of vestibular nystagmus for clinical diagnostic (author's transl)].
    Zangemeister WH; Bock O
    Laryngol Rhinol Otol (Stuttg); 1979 Apr; 58(4):328-35. PubMed ID: 312414
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Primate frontal eye fields. II. Physiological and anatomical correlates of electrically evoked eye movements.
    Bruce CJ; Goldberg ME; Bushnell MC; Stanton GB
    J Neurophysiol; 1985 Sep; 54(3):714-34. PubMed ID: 4045546
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Topographic analysis of human cortical potentials preceding self-initiated and visually triggered saccades.
    Kurtzberg D; Vaughan HG
    Brain Res; 1982 Jul; 243(1):1-9. PubMed ID: 7116145
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Visual suppression of caloric nystagmus in brain-stem lesions.
    Takemori S; Aiba T; Shizawa R
    Ann N Y Acad Sci; 1981; 374():846-54. PubMed ID: 6951462
    [No Abstract]   [Full Text] [Related]  

  • 48. Disordered inhibition in internuclear ophthalmoplegia: analysis of eye movement recordings with computer simulations.
    Feldon SE; Hoyt WF; Stark L
    Brain; 1980 Mar; 103(1):113-37. PubMed ID: 7363056
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Cortical activation pattern during saccadic eye movements in humans: localization by focal cerebral blood flow increases.
    Melamed E; Larsen B
    Ann Neurol; 1979 Jan; 5(1):79-88. PubMed ID: 426470
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [Cortical control of saccades].
    Pierrot-Deseilligny C
    Rev Neurol (Paris); 1989; 145(8-9):596-604. PubMed ID: 2682934
    [TBL] [Abstract][Full Text] [Related]  

  • 51. MRI and fMRI analysis of oculomotor function.
    Müri RM
    Prog Brain Res; 2006; 151():503-26. PubMed ID: 16221599
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [Reflection of speech neuroses in the function of the vestibular apparatus. Occurrence of saddle-shaped nystagmus in the vestibular and optokinetic ENG in stutterers].
    Langová J; Siroký A; Sváb L; Morávek M
    Cesk Otolaryngol; 1978 Oct; 27(5):270-3. PubMed ID: 309357
    [No Abstract]   [Full Text] [Related]  

  • 53. Timing function of the frontal cortex in sequential motor and learning tasks.
    Deecke L; Kornhuber HH; Lang W; Lang M; Schreiber H
    Hum Neurobiol; 1985; 4(3):143-54. PubMed ID: 4066425
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Involvement of the audiovestibular system in multiple sclerosis. An otoneurologic and audiologic study.
    Grénman R
    Acta Otolaryngol Suppl; 1985; 420():1-95. PubMed ID: 3872551
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Site of interaction between saccade signals and vestibular signals induced by head rotation in the alert cat: functional properties and afferent organization of burster-driving neurons.
    Kitama T; Ohki Y; Shimazu H; Tanaka M; Yoshida K
    J Neurophysiol; 1995 Jul; 74(1):273-87. PubMed ID: 7472330
    [TBL] [Abstract][Full Text] [Related]  

  • 56. [Eye movements in animals with extirpated cerebrocortical oculomotor centers].
    Klosovskiĭ BN; Balashova EG
    Vopr Neirokhir; 1975; (5):39-45. PubMed ID: 1081785
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Signalling properties of identified deep cerebellar nuclear neurons related to eye and head movements in the alert cat.
    Gruart A; Delgado-García JM
    J Physiol; 1994 Jul; 478 ( Pt 1)(Pt 1):37-54. PubMed ID: 7965834
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [Pseudocaloric nystagmus (author's transl)].
    Toupet M; Moreau JL; Frachet B; Pialoux P
    Ann Otolaryngol Chir Cervicofac; 1981; 98(7-8):353-8. PubMed ID: 6978670
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Differential topography of human eye movement potentials preceding visually triggered and self-initiated saccades.
    Kurtzberg D; Vaughan HG
    Prog Brain Res; 1980; 54():203-8. PubMed ID: 7220917
    [No Abstract]   [Full Text] [Related]  

  • 60. Pursuit-related neurons in the supplementary eye fields: discharge during pursuit and passive whole body rotation.
    Fukushima J; Akao T; Takeichi N; Kurkin S; Kaneko CR; Fukushima K
    J Neurophysiol; 2004 Jun; 91(6):2809-25. PubMed ID: 14711976
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.