These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 7406219)

  • 1. [Allometry and the original and generalized Gompertz function (author's transl)].
    Sager G
    Anat Anz; 1980; 147(4):389-405. PubMed ID: 7406219
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Allometry and the original and modified Janoschek growth function. (author's transl)].
    Sager G
    Anat Anz; 1980; 148(1):68-82. PubMed ID: 7212284
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Allometry and the increase function dW/dt = kWm/(t + to)p (author's transl)].
    Sager G
    Anat Anz; 1981; 149(3):270-81. PubMed ID: 7258670
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [A generalization of the Gompertz-function of organic growth (author's transl)].
    Sager G
    Anat Anz; 1979; 146(1):79-89. PubMed ID: 525816
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Increase functions of the type dW/dt=k Wm/(t + to)p and their integrals (author's transl)].
    Sager G
    Anat Anz; 1980; 147(5):445-57. PubMed ID: 7436002
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Allometry and growth functions (author's transl)].
    Sager G
    Anat Anz; 1980; 147(1):85-99. PubMed ID: 7396228
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Increase functions of the type dW/dt = k Wm (E--W)n and their integrals (author's transl)].
    Sager G
    Anat Anz; 1978; 144(3):235-45. PubMed ID: 742716
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [The function W = (a--b e-ct)n, a generalization of the classical growth functions (author's transl)].
    Sager G
    Anat Anz; 1980; 148(3):274-86. PubMed ID: 7224187
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Increase functions of the type dw/dt = kwm(te--t)q and their integrals (author's transl)].
    Sager G
    Anat Anz; 1979; 145(1):71-82. PubMed ID: 434480
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Increase functions of the type dW/dt=ktp(E-W)n and their integrals (author's transl)].
    Sager G
    Anat Anz; 1978 Sep; 144(4):366-74. PubMed ID: 742722
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [A generalized form of the Bertalanffy functions of organic growth (author's transl)].
    Sager G
    Anat Anz; 1979; 146(2):188-200. PubMed ID: 507388
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [An example of gaining a growth function by its increase values (author's transl)].
    Sager G
    Anat Anz; 1979; 146(4):390-9. PubMed ID: 546270
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Increase functions of the type DW/DT = K(T + T0)P (E - W)N and their integrals (author's transl)].
    Sager G
    Anat Anz; 1982; 151(2):179-86. PubMed ID: 7091704
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Increase functions of the type dW/dt = ktp-1(tEp--tp)q and their integrals (author's transl)].
    Sager G
    Anat Anz; 1979; 145(3):268-75. PubMed ID: 474992
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Integrations of increase functions according to the L. v. Bertalanffy conception of organic growth (author's transl)].
    Sager G
    Anat Anz; 1978 Jul; 144(2):147-57. PubMed ID: 742706
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Properties of harmonically season-modified Bertalanffy function of growth in length].
    Sager G
    Anat Anz; 1983; 154(2):169-78. PubMed ID: 6650848
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [The testing of growth functions for the length of Siliqua patula (Bivalvia) (author's transl)].
    Sager G
    Anat Anz; 1980; 148(5):446-61. PubMed ID: 7235266
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Length growth of the North Sea turbot (Scophthalmus maximus L. male) (author's transl)].
    Sager G
    Anat Anz; 1981; 149(2):160-75. PubMed ID: 7258663
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Seasonally modified forms of the revised Janoschek function].
    Sager G
    Gegenbaurs Morphol Jahrb; 1984; 130(5):659-69. PubMed ID: 6510661
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [The growth function w = e (sin (pi/2(t/te)(p))) (2q) and its properties (author's transl)].
    Sager G
    Anat Anz; 1979; 145(4):369-79. PubMed ID: 507368
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.