These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
204 related articles for article (PubMed ID: 7406888)
1. Enhancement of hydrogen peroxide formation by protophores and ionophores in antimycin-supplemented mitochondria. Cadenas E; Boveris A Biochem J; 1980 Apr; 188(1):31-7. PubMed ID: 7406888 [TBL] [Abstract][Full Text] [Related]
2. The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen. Boveris A; Chance B Biochem J; 1973 Jul; 134(3):707-16. PubMed ID: 4749271 [TBL] [Abstract][Full Text] [Related]
3. Relationships between the effects of redox potential, alpha-thenoyltrifluoroacetone and malonate on O(2) and H2O2 generation by submitochondrial particles in the presence of succinate and antimycin. Ksenzenko M; Konstantinov AA; Khomutov GB; Tikhonov AN; Ruuge EK FEBS Lett; 1984 Sep; 175(1):105-8. PubMed ID: 6090204 [TBL] [Abstract][Full Text] [Related]
4. Shift in the localization of sites of hydrogen peroxide production in brain mitochondria by mitochondrial stress. Gyulkhandanyan AV; Pennefather PS J Neurochem; 2004 Jul; 90(2):405-21. PubMed ID: 15228597 [TBL] [Abstract][Full Text] [Related]
5. Role of ubiquinone in the mitochondrial generation of hydrogen peroxide. Boveris A; Cadenas E; Stoppani AO Biochem J; 1976 May; 156(2):435-44. PubMed ID: 182149 [TBL] [Abstract][Full Text] [Related]
6. Mechanism of respiration-driven proton translocation in the inner mitochondrial membrane. Analysis of proton translocation associated with oxidation of endogenous ubiquinol. Papa S; Lorusso M; Guerrieri F Biochim Biophys Acta; 1975 Jun; 387(3):425-40. PubMed ID: 237540 [TBL] [Abstract][Full Text] [Related]
11. Mitochondrial formation of OH Radicals by an ubisemiquinone-dependent reaction an alternative pathway to the iron-catalysed Haber-Weiss cycle. Nohl H; Jordan W; Hegner D Hoppe Seylers Z Physiol Chem; 1982 Jun; 363(6):599-607. PubMed ID: 6286449 [No Abstract] [Full Text] [Related]
12. The pathway of electron flow through ubiquinol:cytochrome c oxidoreductase in the respiratory chain. Evidence from inhibition studies for a modified 'Q cycle'. Halestrap AP Biochem J; 1982 Apr; 204(1):49-59. PubMed ID: 6288019 [TBL] [Abstract][Full Text] [Related]
13. Reprint of: Ubisemiquinone Is the Electron Donor for Superoxide Formation by Complex III of Heart Mitochondria. F Turrens J; Alexandre A; L Lehninger A Arch Biochem Biophys; 2022 Sep; 726():109232. PubMed ID: 35660297 [TBL] [Abstract][Full Text] [Related]
14. Uncoupling of oxidative phosphorylation: different effects of lipophilic weak acids and electrogenic ionophores on the kinetics of ATP synthesis. Matsuno-Yagi A; Hatefi Y Biochemistry; 1989 May; 28(10):4367-74. PubMed ID: 2475167 [TBL] [Abstract][Full Text] [Related]
15. Kinetics of cytochrome b reduction in submitochondrial particles. Van Ark G; Raap AK; Berden JA; Slater EC Biochim Biophys Acta; 1981 Aug; 637(1):34-42. PubMed ID: 7284355 [TBL] [Abstract][Full Text] [Related]
16. Uptake of aspartate aminotransferase into mitochondria in vitro depends on the transmembrane pH gradient. Passarella S; Marra E; Doonan S; Languino LR; Saccone C; Quagliariello E Biochem J; 1982 Feb; 202(2):353-62. PubMed ID: 7092821 [TBL] [Abstract][Full Text] [Related]
17. Dual involvement of coenzyme Q10 in redox signaling and inhibition of death signaling in the rat heart mitochondria. Yamamura T; Otani H; Nakao Y; Hattori R; Osako M; Imamura H; Das DK Antioxid Redox Signal; 2001 Feb; 3(1):103-12. PubMed ID: 11291590 [TBL] [Abstract][Full Text] [Related]
18. [Coupling effect of 6-ketocholestanol on mitochondria, hydrolyzing adenosine triphosphate in the presence of uncoupling agents-protonophores]. Mansurova SE; Simonian RA; Skulachev VP; Starkov AA Mol Biol (Mosk); 1995; 29(6):1376-83. PubMed ID: 8592507 [No Abstract] [Full Text] [Related]