These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 7407133)
1. The transbilayer movement of phosphatidylcholine in vesicles reconstituted with intrinsic proteins from the human erythrocyte membrane. Gerritsen WJ; Henricks PA; de Kruijff B; van Deenen LL Biochim Biophys Acta; 1980 Aug; 600(3):607-19. PubMed ID: 7407133 [TBL] [Abstract][Full Text] [Related]
2. A 13C NMR method for determination of the transbilayer distribution of phosphatidylcholine in large, unilamellar, protein-free and protein-containing vesicles. Gerritsen WJ; van Zoelen EJ; Verkleij AJ; de Kruijff B; van Deenen LL Biochim Biophys Acta; 1979 Mar; 551(2):248-59. PubMed ID: 420832 [TBL] [Abstract][Full Text] [Related]
3. Freeze-fracture appearance and disposition of band 3 protein from the human erythrocyte membrane in lipid vesicles. Gerritsen WJ; Verkley AJ; Zwaal RF; Van Deenen LL Eur J Biochem; 1978 Apr; 85(1):255-61. PubMed ID: 639819 [TBL] [Abstract][Full Text] [Related]
4. The anion permeability of vesicles reconstituted with intrinsic proteins from the human erythrocyte membrane. Van Hoogevest P; Van Duijn G; Batenburg AM; De Kruijff B; De Gier J Biochim Biophys Acta; 1983 Sep; 734(1):1-17. PubMed ID: 6615825 [TBL] [Abstract][Full Text] [Related]
5. Effect of dimyristoyl phosphatidylcholine on intact erythrocytes. Release of spectrin-free vesicles without ATP depletion. Ott P; Hope MJ; Verkleij AJ; Roelofsen B; Brodbeck U; van Deenen LL Biochim Biophys Acta; 1981 Feb; 641(1):79-87. PubMed ID: 7213719 [TBL] [Abstract][Full Text] [Related]
6. Rapid transmembrane movement of phosphatidylcholine in small unilamellar lipid vesicles formed by detergent removal. Kramer RM; Hasselbach HJ; Semenza G Biochim Biophys Acta; 1981 Apr; 643(1):233-42. PubMed ID: 7236690 [TBL] [Abstract][Full Text] [Related]
7. Hydrogen exchange from the transbilayer hydrophobic peptide of glycophorin reconstituted in lipid bilayers. Sami M; Dempsey C FEBS Lett; 1988 Nov; 240(1-2):211-5. PubMed ID: 3191995 [TBL] [Abstract][Full Text] [Related]
8. Effect of phospholipid oxidation products on transbilayer movement of phospholipids in single lamellar vesicles. Shaw JM; Thompson TE Biochemistry; 1982 Mar; 21(5):920-7. PubMed ID: 7074060 [TBL] [Abstract][Full Text] [Related]
9. Complete exchange of phosphatidylcholine from intact erythrocytes after protein crosslinking. Franck PF; Roelofsen B; Op den Kamp JA Biochim Biophys Acta; 1982 Apr; 687(1):105-8. PubMed ID: 7074104 [TBL] [Abstract][Full Text] [Related]
10. Transbilayer distribution and mobility of phosphatidylcholine in intact erythrocyte membranes. A study with phosphatidylcholine exchange protein. van Meer G; Poorthuis BJ; Wirtz KW; Op den Kamp JA; van Deenen LL Eur J Biochem; 1980 Jan; 103(2):283-8. PubMed ID: 7363893 [TBL] [Abstract][Full Text] [Related]
11. Effect of glycophorin on lipid polymorphism. A 31P-NMR study. Taraschi TF; De Kruijff B; Verkleij A; Van Echteld CJ Biochim Biophys Acta; 1982 Feb; 685(2):153-61. PubMed ID: 7059597 [TBL] [Abstract][Full Text] [Related]
12. Protein-mediated transbilayer movement of lysophosphatidylcholine in glycophorin-containing vesicles. van Zoelen EJ; de Kruijff B; van Deenen LL Biochim Biophys Acta; 1978 Mar; 508(1):97-108. PubMed ID: 629969 [TBL] [Abstract][Full Text] [Related]
13. Barrier properties of glycophorin-phospholipid systems prepared by different methods. Van der Steen AT; Taraschi TF; Voorhout WF; De Kruijff B Biochim Biophys Acta; 1983 Aug; 733(1):51-64. PubMed ID: 6688359 [TBL] [Abstract][Full Text] [Related]
14. Asymmetric and functional reconstitution of band 3 into pre-formed phosphatidylcholine vesicles. Boulter JM; Taylor AM; Watts A Biochim Biophys Acta; 1996 Apr; 1280(2):265-71. PubMed ID: 8639703 [TBL] [Abstract][Full Text] [Related]
15. Complement proteins C5b-9 induce transbilayer migration of membrane phospholipids. Van der Meer BW; Fugate RD; Sims PJ Biophys J; 1989 Nov; 56(5):935-46. PubMed ID: 2605304 [TBL] [Abstract][Full Text] [Related]
16. Transbilayer movement of various phosphatidylcholine species in intact human erythrocytes. van Meer G; Op den Kamp JA J Cell Biochem; 1982; 19(2):193-204. PubMed ID: 7174747 [TBL] [Abstract][Full Text] [Related]
17. Retention of lipid asymmetry in membranes on polylysine-coated polyacrylamide beads. Kramer RM; Branton D Biochim Biophys Acta; 1979 Sep; 556(2):219-32. PubMed ID: 534625 [TBL] [Abstract][Full Text] [Related]
18. Ca2+-induced isotropic motion and phosphatidylcholine flip-flop in phosphatidylcholine-cardiolipin bilayers. Gerritsen WJ; de Kruijff B; Verkleij AJ; de Gier J; van Deenen LL Biochim Biophys Acta; 1980 Jun; 598(3):554-60. PubMed ID: 7388023 [TBL] [Abstract][Full Text] [Related]
19. Induction of a relatively fast transbilayer movement of phosphatidylcholine in vesicles. A 13CNMR study. De Kruijff B; Wirtz KW Biochim Biophys Acta; 1977 Jul; 468(2):318-26. PubMed ID: 560207 [TBL] [Abstract][Full Text] [Related]
20. Incorporation of the human erythrocyte sialoglycoprotein into recombined membranes containing cholesterol. Yeagle PL J Membr Biol; 1984; 78(3):201-10. PubMed ID: 6726789 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]