These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 7407159)

  • 1. Reconstitution of human erythrocyte membrane acetylcholinesterase in phospholipid vesicles. Analysis of the molecular forms by cross-linking studies.
    Römer-Lüthi CR; Ott P; Brodbeck U
    Biochim Biophys Acta; 1980 Sep; 601(1):123-33. PubMed ID: 7407159
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lipid-protein interactions in human erythrocyte-membrane acetylcholinesterase. Modulation of enzyme activity by lipids.
    Frenkel EJ; Roelofsen B; Brodbeck U; van Deenen LL; Ott P
    Eur J Biochem; 1980 Aug; 109(2):377-82. PubMed ID: 7408889
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human erythrocyte membrane acetylcholinesterase. Incorporation into the lipid bilayer structure of liposomes.
    Hall ER; Brodbeck U
    Eur J Biochem; 1978 Aug; 89(1):159-67. PubMed ID: 699904
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Amphiphile dependency of the monomeric and dimeric forms of acetylcholinesterase from human erythrocyte membrane.
    Ott P; Brodbeck U
    Biochim Biophys Acta; 1984 Aug; 775(1):71-6. PubMed ID: 6466662
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reconstitution of pure acetylcholine receptor in phospholipid vesicles and comparison with receptor-rich membranes by the use of a potentiometric dye.
    Lüdi H; Oetliker H; Brodbeck U; Ott P; Schwendimann B; Fulpius BW
    J Membr Biol; 1983; 74(2):75-84. PubMed ID: 6876149
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A small hydrophobic domain that localizes human erythrocyte acetylcholinesterase in liposomal membranes is cleaved by papain digestion.
    Kim BH; Rosenberry TL
    Biochemistry; 1985 Jul; 24(14):3586-92. PubMed ID: 4041429
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A systematic study of liposome and proteoliposome reconstitution involving Bio-Bead-mediated Triton X-100 removal.
    Lévy D; Bluzat A; Seigneuret M; Rigaud JL
    Biochim Biophys Acta; 1990 Jun; 1025(2):179-90. PubMed ID: 2364077
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Release of vesicles containing acetylcholinesterase from erythrocyte membranes by treatment with dilauroylglycerophosphocholine.
    Takahashi K; Kobayashi T; Yamada A; Tanaka Y; Inoue K; Nojima S
    J Biochem; 1983 Jun; 93(6):1691-99. PubMed ID: 6885744
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular forms of purified human erythrocyte membrane acetylcholinesterase investigated by crosslinking with diimidates.
    Römer-Lüthi CR; Hajdu J; Brodbeck U
    Hoppe Seylers Z Physiol Chem; 1979 Jul; 360(7):929-34. PubMed ID: 488916
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiple molecular forms of purified human erythrocyte acetylcholinesterase.
    Ott P; Jenny B; Brodbeck U
    Eur J Biochem; 1975 Sep; 57(2):469-80. PubMed ID: 1175653
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Freeze-fracture appearance and disposition of band 3 protein from the human erythrocyte membrane in lipid vesicles.
    Gerritsen WJ; Verkley AJ; Zwaal RF; Van Deenen LL
    Eur J Biochem; 1978 Apr; 85(1):255-61. PubMed ID: 639819
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A monomeric form of human erythrocyte membrane acetylcholinesterase.
    Ott P; Ariano BH; Binggeli Y; Brodbeck U
    Biochim Biophys Acta; 1983 Apr; 729(2):193-9. PubMed ID: 6830786
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiple molecular forms of acetylcholinesterase from human erythrocyte membranes. Interconversion and subunit composition of forms separated by density gradient centrifugation in a zonal rotor.
    Ott P; Brodbeck U
    Eur J Biochem; 1978 Jul; 88(1):119-25. PubMed ID: 668703
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The influence of lipid composition on the barrier properties of band 3-containing lipid vesicles.
    Van Hoogevest P; Du Maine AP; De Kruijff B; De Gier J
    Biochim Biophys Acta; 1984 Nov; 777(2):241-52. PubMed ID: 6487626
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rotational diffusion and self-association of band 3 in reconstituted lipid vesicles.
    Mühlebach T; Cherry RJ
    Biochemistry; 1985 Feb; 24(4):975-83. PubMed ID: 3995003
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of dimyristoyl phosphatidylcholine on intact erythrocytes. Release of spectrin-free vesicles without ATP depletion.
    Ott P; Hope MJ; Verkleij AJ; Roelofsen B; Brodbeck U; van Deenen LL
    Biochim Biophys Acta; 1981 Feb; 641(1):79-87. PubMed ID: 7213719
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of amphiphiles on structure and activity of human erythrocyte membrane acetylcholinesterase.
    Wiedmer T; Di Francesco C; Brodbeck U
    Eur J Biochem; 1979 Dec; 102(1):59-64. PubMed ID: 520324
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Asymmetric and functional reconstitution of band 3 into pre-formed phosphatidylcholine vesicles.
    Boulter JM; Taylor AM; Watts A
    Biochim Biophys Acta; 1996 Apr; 1280(2):265-71. PubMed ID: 8639703
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effective detergent/lipid ratios in the solubilization of phosphatidylcholine vesicles by Triton X-100.
    Partearroyo MA; Urbaneja MA; Goñi FM
    FEBS Lett; 1992 May; 302(2):138-40. PubMed ID: 1633845
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular form of human lymphocyte membrane-bound acetylcholinesterase.
    Bartha E; Rakonczay Z; Kása P; Hollán S; Gyévai A
    Life Sci; 1987 Oct; 41(15):1853-60. PubMed ID: 3657387
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.