These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

723 related articles for article (PubMed ID: 7407210)

  • 1. On the mechanism of regulation of hepatic 3-hydroxy-3-methylglutaryl coenzyme A reductase and of acyl coenzyme A:cholesterol acyltransferase by dietary fat.
    Mitropoulos KA; Venkatesan S; Balasubramaniam S
    Biochim Biophys Acta; 1980 Aug; 619(2):247-57. PubMed ID: 7407210
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modulation of 3-hydroxy-3-methylglutaryl-CoA reductase and of acyl-CoA--cholesterol acyltransferase by the transfer of non-esterified cholesterol to rat liver microsomal vesicles.
    Mitropoulos KA; Venkatesan S; Reeves BE; Balasubramaniam S
    Biochem J; 1981 Jan; 194(1):265-71. PubMed ID: 7305980
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of dietary fat saturation, cholesterol and cholestyramine on acyl-CoA: cholesterol acyltransferase activity in rabbit intestinal microsomes.
    Field FJ; Salome RG
    Biochim Biophys Acta; 1982 Sep; 712(3):557-70. PubMed ID: 7126624
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of dietary fat saturation on acylcoenzyme A:cholesterol acyltransferase activity of rat liver microsomes.
    Spector AA; Kaduce TL; Dane RW
    J Lipid Res; 1980 Feb; 21(2):169-79. PubMed ID: 6103016
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3-Hydroxy-3-methylglutaryl-coenzyme A reductase. The difference in the mechanism of the in vitro modulation by phosphorylation and dephosphorylation to modulation of enzyme activity by non-esterified cholesterol.
    Venkatesan S; Mitropoulos KA
    Biochim Biophys Acta; 1982 Mar; 710(3):446-55. PubMed ID: 7074124
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correlation between changes in membrane lipid composition induced by dietary lipid and membrane-bound enzyme activity in chick liver.
    Alejandre MJ; Garcia-Gonzalez M; Segovia JL
    Biochem Int; 1988 Sep; 17(3):461-9. PubMed ID: 3202881
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the mechanism for the regulation of 3-hydroxy-3-methylglutaryl-coenzyme A reductase, of cholesterol 7alpha-hydroxylase and of acyl-coenzyme A:cholesterol acyltransferase by free cholesterol.
    Mitropoulos KA; Balasubramaniam S; Venkatesan S; Reeves BE
    Biochim Biophys Acta; 1978 Jul; 530(1):99-111. PubMed ID: 687657
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of acylcoenzyme A. Cholesterol acyltransferase and 3-hydroxy-3-methylglutaryl coenzyme A reductase activity by lipoproteins in the intestine of parabiont rats.
    Purdy BH; Field FJ
    J Clin Invest; 1984 Aug; 74(2):351-7. PubMed ID: 6746898
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3-hydroxy-3-methylglutaryl-coenzyme A reductase A comparison of the modulation in vitro by phosphorylation and dephosphorylation to modulation of enzyme activity by feeding cholesterol- or cholestryamine-supplemented diets.
    Mitropoulos KA; Knight BL; Reeves BE
    Biochem J; 1980 Feb; 185(2):435-41. PubMed ID: 6249255
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Homoeostatic control of membrane cholesterol and fatty acid metabolism in the rat liver.
    Garg ML; Sabine JR
    Biochem J; 1988 Apr; 251(1):11-6. PubMed ID: 2898938
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of ovarian cholesterol metabolism: control of 3-hydroxy-3-methylglutaryl coenzyme A reductase and acyl coenzyme A:cholesterol acyltransferase.
    Schuler LA; Toaff ME; Strauss JF
    Endocrinology; 1981 Apr; 108(4):1476-86. PubMed ID: 7472277
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activity of acyl-CoA: cholesterol acyltransferase and 3-hydroxy-3-methylglutaryl-CoA reductase in subfractions of hepatic microsomes enriched with cholesterol.
    Hashimoto S; Drevon CA; Weinstein DB; Bernett JS; Dayton S; Steinberg D
    Biochim Biophys Acta; 1983 Nov; 754(2):126-33. PubMed ID: 6197090
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The activity of 3-hydroxy-3-methylglutaryl-CoA reductase and acyl-CoA: cholesterol acyltransferase in hepatic microsomes from male, female and pregnant rats. The effect of cholestyramine treatment and the relationship of enzyme activity to microsomal lipid composition.
    Innis SM
    Biochim Biophys Acta; 1986 Feb; 875(2):355-61. PubMed ID: 3942771
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolism of cholesterol is altered in the liver of C3H mice fed fats enriched with different C-18 fatty acids.
    Cheema SK; Agellon LB
    J Nutr; 1999 Sep; 129(9):1718-24. PubMed ID: 10460210
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Serum lipids, hepatic glycerolipid metabolism and peroxisomal fatty acid oxidation in rats fed omega-3 and omega-6 fatty acids.
    Rustan AC; Christiansen EN; Drevon CA
    Biochem J; 1992 Apr; 283 ( Pt 2)(Pt 2):333-9. PubMed ID: 1349473
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acyl-CoA: cholesterol acyltransferase and 3-hydroxy-3-methylglutaryl-CoA reductase in carp-liver microsomes: effect of cold acclimation on enzyme activities and on hepatic and plasma lipid composition.
    Teichert T; Wodtke E
    Biochim Biophys Acta; 1992 Dec; 1165(2):211-21. PubMed ID: 1450216
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dietary fat-dependent changes in hepatic cholesterogenesis and the activity of 3-hydroxy-3-methylglutaryl-CoA reductase in fasted-refed rats.
    Ide T; Tanaka T; Sugano M
    J Nutr; 1979 May; 109(5):807-18. PubMed ID: 438898
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dietary fat saturation and hepatic acylcoenzyme A:cholesterol acyltransferase activity. Effect of n-3 polyunsaturated and long-chain saturated fat.
    Johnson MR; Mathur SN; Coffman C; Spector AA
    Arteriosclerosis; 1983; 3(3):242-8. PubMed ID: 6847523
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of plasma membranes in the transfer of non-esterified cholesterol to the acyl-CoA:cholesterol acyltransferase substrate pool in liver microsomal fraction.
    Mitropoulos KA; Venkatesan S; Synouri-Vrettakou S; Reeves BE; Gallagher JJ
    Biochim Biophys Acta; 1984 Feb; 792(2):227-37. PubMed ID: 6696932
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of dietary n-3 fatty acids on HMG-CoA reductase and ACAT activities in liver and intestine of the rabbit.
    Field FJ; Albright EJ; Mathur SN
    J Lipid Res; 1987 Jan; 28(1):50-8. PubMed ID: 3559400
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 37.