These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Physiological effects induced by antiorthostatic hypokinesia. Kakurin LI; Kuzmin MP; Matsnev EI; Mikhailov VM Life Sci Space Res; 1976; 14():101-8. PubMed ID: 12678102 [TBL] [Abstract][Full Text] [Related]
7. [The pharmacological correction of hemodynamics during the simulation of the early period of adaptation to weightlessness]. Shashko VS; Modin AIu; Il'ina SL; Sabaev VV; Shashkov AV; Potapov MG Aviakosm Ekolog Med; 1999; 33(3):3-8. PubMed ID: 10485023 [TBL] [Abstract][Full Text] [Related]
8. [Electroanesthesia as a means of controlling cold stress during regional hypothermia]. Stazhadze LL; Sigaev VV; Titov AA; Romanov AN; Repenkova LG Kosm Biol Aviakosm Med; 1985; 19(2):81-5. PubMed ID: 3990238 [No Abstract] [Full Text] [Related]
9. [Some mechanisms of modeling the hydrostatic component of hemodynamics in microgravity]. Baranov VM; Tikhonov MA; Kotov AN; Kolesnikov VI Aviakosm Ekolog Med; 2000; 34(4):27-31. PubMed ID: 11186580 [TBL] [Abstract][Full Text] [Related]
11. Effects of hindlimb suspension training on the central and regional hemodynamic responses during 24 hours antiorthostatic hypokinesia in the awake rat. Bytchkova EY; Medvedev OS; Matsievsky DD; Krotov VP J Gravit Physiol; 1994 May; 1(1):P137-8. PubMed ID: 11538743 [TBL] [Abstract][Full Text] [Related]
12. [Some physiological effects caused by 30 days of bed rest in different body positions]. Katkovskiĭ BS; Georgievskiĭ VS; Machinskiĭ GV; Mikhaĭlov VM; Pometov IuD Kosm Biol Aviakosm Med; 1980; 14(4):55-8. PubMed ID: 7421103 [TBL] [Abstract][Full Text] [Related]
13. [Cardiovascular functioning during seven days of simulated microgravity in humans using occlusive thigh cuffs]. Fomina GA; Kotovskaia AR; Arbeille P Fiziol Cheloveka; 2003; 29(5):58-64. PubMed ID: 14611085 [No Abstract] [Full Text] [Related]
14. [The changes of cardiovascular response to orthostatic stress caused by hypovolemia induced by weightlessness: a simulation study]. Hao W; Bai J; Zhang L; Wu X Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2002 Jan; 19(1):48-52. PubMed ID: 11951522 [TBL] [Abstract][Full Text] [Related]
15. Effect of antiorthostatic bed rest on the human body. Krupina TN; Fyodorov BM; Filatova LM; Tsyganova NI; Matsnev EI Life Sci Space Res; 1976; 14():285-7. PubMed ID: 12678113 [TBL] [Abstract][Full Text] [Related]
16. [Effects of isolated and combined effects of a constant magnetic field and antiorthostatic hypokinesia on central hemodynamics in rats]. Kazakova RT; Badakva AM Kosm Biol Aviakosm Med; 1991; 25(5):48-9. PubMed ID: 8577143 [TBL] [Abstract][Full Text] [Related]
17. Adrenergic regulation and membrane status in humans during head-down hypokinesia (HDT). Grigoriev AI; Ivanova SM; Bluma RK; Kalninja IE; Sominsky VN Physiologist; 1991 Feb; 34(1 Suppl):S66-7. PubMed ID: 2047471 [No Abstract] [Full Text] [Related]
18. [30-day experiment in modelling the physiological effects of weightlessness. Change in cardiac output and gas exchange at rest in hypokinesia]. Pometov IuD; Katkovskiĭ BS Kosm Biol Med; 1972; 6(4):39-46. PubMed ID: 4646594 [No Abstract] [Full Text] [Related]
19. [Prevention of respiratory muscles deconditioning and deterioration of aerobic working capacity in prolonged weightlessness and hypokinesia]. Baranov VM; Tikhonov MA; Kotov AN; Kolesnikov VI; Kuchin SN; Letkova LI; Tikhomirov EP Aviakosm Ekolog Med; 1998; 32(6):36-42. PubMed ID: 9934441 [TBL] [Abstract][Full Text] [Related]
20. [Features of central hemodynamics during modeling of the effects of weightlessness using hypokinesia and immersion]. Katkov VE; Kakurin LI; Chestukhin VV; Nikolaenko EM Vestn Akad Med Nauk SSSR; 1987; (6):71-7. PubMed ID: 3630352 [No Abstract] [Full Text] [Related] [Next] [New Search]