These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. A general chain binomial model for infectious diseases. Becker N Biometrics; 1981 Jun; 37(2):251-8. PubMed ID: 7272413 [No Abstract] [Full Text] [Related]
4. Deterministic epidemic models with explicit household structure. House T; Keeling MJ Math Biosci; 2008 May; 213(1):29-39. PubMed ID: 18374370 [TBL] [Abstract][Full Text] [Related]
5. The Kermack-McKendrick epidemic model revisited. Brauer F Math Biosci; 2005 Dec; 198(2):119-31. PubMed ID: 16135371 [TBL] [Abstract][Full Text] [Related]
7. Household and community transmission parameters from final distributions of infections in households. Longini IM; Koopman JS Biometrics; 1982 Mar; 38(1):115-26. PubMed ID: 7082755 [TBL] [Abstract][Full Text] [Related]
8. A Bayesian MCMC approach to study transmission of influenza: application to household longitudinal data. Cauchemez S; Carrat F; Viboud C; Valleron AJ; Boëlle PY Stat Med; 2004 Nov; 23(22):3469-87. PubMed ID: 15505892 [TBL] [Abstract][Full Text] [Related]
9. A new explanatory model of an SIR disease epidemic: a knowledge-based, probabilistic approach to epidemic analysis. Sayers BM; Angulo J Scand J Infect Dis; 2005; 37(1):55-60. PubMed ID: 15764191 [TBL] [Abstract][Full Text] [Related]
10. Control of emerging infectious diseases using responsive imperfect vaccination and isolation. Ball FG; Knock ES; O'Neill PD Math Biosci; 2008 Nov; 216(1):100-13. PubMed ID: 18789951 [TBL] [Abstract][Full Text] [Related]
11. Network epidemic models with two levels of mixing. Ball F; Neal P Math Biosci; 2008 Mar; 212(1):69-87. PubMed ID: 18280521 [TBL] [Abstract][Full Text] [Related]
12. A Kermack-McKendrick model applied to an infectious disease in a natural population. Roberts MG IMA J Math Appl Med Biol; 1999 Dec; 16(4):319-32. PubMed ID: 10669893 [TBL] [Abstract][Full Text] [Related]
13. Estimation and inference of R0 of an infectious pathogen by a removal method. Ferrari MJ; Bjørnstad ON; Dobson AP Math Biosci; 2005 Nov; 198(1):14-26. PubMed ID: 16216286 [TBL] [Abstract][Full Text] [Related]
14. Epidemics and vaccination on weighted graphs. Deijfen M Math Biosci; 2011 Jul; 232(1):57-65. PubMed ID: 21536052 [TBL] [Abstract][Full Text] [Related]
16. An integral equation model for the control of a smallpox outbreak. Aldis GK; Roberts MG Math Biosci; 2005 May; 195(1):1-22. PubMed ID: 15922002 [TBL] [Abstract][Full Text] [Related]
17. [A modified pattern of Reed-Frost deterministic model and its application]. Zeng G Zhonghua Liu Xing Bing Xue Za Zhi; 1986 Dec; 7(6):356-61. PubMed ID: 3815499 [No Abstract] [Full Text] [Related]
18. Contact rate calculation for a basic epidemic model. Rhodes CJ; Anderson RM Math Biosci; 2008 Nov; 216(1):56-62. PubMed ID: 18783724 [TBL] [Abstract][Full Text] [Related]
19. A new SEIR epidemic model with applications to the theory of eradication and control of diseases, and to the calculation of R0. Huang SZ Math Biosci; 2008 Sep; 215(1):84-104. PubMed ID: 18621064 [TBL] [Abstract][Full Text] [Related]
20. Optimal treatment of an SIR epidemic model with time delay. Zaman G; Kang YH; Jung IH Biosystems; 2009 Oct; 98(1):43-50. PubMed ID: 19464340 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]