These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 7408743)

  • 1. Extrauterine fatty acid accretion in infant brain: implications for fatty acid requirements.
    Clandinin MT; Chappell JE; Leong S; Heim T; Swyer PR; Chance GW
    Early Hum Dev; 1980 Jun; 4(2):131-8. PubMed ID: 7408743
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intrauterine fatty acid accretion rates in human brain: implications for fatty acid requirements.
    Clandinin MT; Chappell JE; Leong S; Heim T; Swyer PR; Chance GW
    Early Hum Dev; 1980 Jun; 4(2):121-9. PubMed ID: 7408742
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fatty acid accretion in fetal and neonatal liver: implications for fatty acid requirements.
    Clandinin MT; Chappell JE; Heim T; Swyer PR; Chance GW
    Early Hum Dev; 1981 Feb; 5(1):7-14. PubMed ID: 7472235
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fatty acid accretion in the development of human spinal cord.
    Clandinin MT; Chappell JE; Heim T; Swyer PR; Chance GW
    Early Hum Dev; 1981 Feb; 5(1):1-6. PubMed ID: 7472232
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fatty acid utilization in perinatal de novo synthesis of tissues.
    Clandinin MT; Chappell JE; Heim T; Swyer PR; Chance GW
    Early Hum Dev; 1981 Sep; 5(4):355-66. PubMed ID: 7285840
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of a vegetable oil formula rich in linoleic acid on tissue fatty acid accretion in the brain, liver, plasma, and erythrocytes of infant piglets.
    Hrboticky N; MacKinnon MJ; Innis SM
    Am J Clin Nutr; 1990 Feb; 51(2):173-82. PubMed ID: 2305703
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fatty acid accretion during perinatal brain growth in the pig. A model for fatty acid accretion in human brain.
    Purvis JM; Clandinin MT; Hacker RR
    Comp Biochem Physiol B; 1982; 72(2):195-9. PubMed ID: 7116810
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modification of milk formula to enhance accretion of long-chain n-6 and n-3 polyunsaturated fatty acids in artificially reared infant rats.
    Yeh YY; Yeh SM; Lien EL
    Lipids; 1998 May; 33(5):513-20. PubMed ID: 9625599
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gestational age dependent content, composition and intrauterine accretion rates of fatty acids in fetal white adipose tissue.
    Kuipers RS; Luxwolda MF; Offringa PJ; Martini IA; Boersma ER; Dijck-Brouwer DA; Muskiet FA
    Prostaglandins Leukot Essent Fatty Acids; 2012; 86(1-2):39-49. PubMed ID: 22093549
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Small changes of dietary (n-6) and (n-3)/fatty acid content ration alter phosphatidylethanolamine and phosphatidylcholine fatty acid composition during development of neuronal and glial cells in rats.
    Jumpsen J; Lien EL; Goh YK; Clandinin MT
    J Nutr; 1997 May; 127(5):724-31. PubMed ID: 9164993
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dietary docosahexaenoic acid but not arachidonic acid influences central nervous system fatty acid status in baboon neonates.
    Hsieh AT; Brenna JT
    Prostaglandins Leukot Essent Fatty Acids; 2009; 81(2-3):105-10. PubMed ID: 19524425
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formula alpha-linolenic (18:3(n - 3)) and linoleic (18:2(n - 6)) acid influence neonatal piglet liver and brain saturated fatty acids, as well as docosahexaenoic acid (22:6(n - 3)).
    Arbuckle LD; Rioux FM; MacKinnon MJ; Innis SM
    Biochim Biophys Acta; 1992 May; 1125(3):262-7. PubMed ID: 1350737
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Fatty acids and aldehydes of brain phospholipids during fetal and infant development in man].
    Altrock K; Debuch H
    J Neurochem; 1968 Nov; 15(11):1351-9. PubMed ID: 5707423
    [No Abstract]   [Full Text] [Related]  

  • 14. Impact of early dietary intake and blood lipid composition of long-chain polyunsaturated fatty acids on later visual development.
    Hoffman DR; Birch EE; Birch DG; Uauy R; Castañeda YS; Lapus MG; Wheaton DH
    J Pediatr Gastroenterol Nutr; 2000 Nov; 31(5):540-53. PubMed ID: 11144440
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fatty acid composition of human brain phospholipids during normal development.
    Martínez M; Mougan I
    J Neurochem; 1998 Dec; 71(6):2528-33. PubMed ID: 9832152
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of postnatal age and diet on the fatty acid composition of plasma lipid fractions in preterm infants.
    Pita ML; Girón MD; Pérez-Ayala M; DeLucchi C; Martínez Valverde A; Gil A
    Clin Physiol Biochem; 1989; 7(5):238-48. PubMed ID: 2805572
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of postnatal ethanol exposure on brain growth and lipid composition in n-3 fatty acid-deficient and -adequate rats.
    Ward GR; Xing HC; Wainwright PE
    Lipids; 1999 Nov; 34(11):1177-86. PubMed ID: 10606040
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Medium-chain triglycerides in formula for preterm neonates: implications for hepatic and extrahepatic metabolism.
    Borum PR
    J Pediatr; 1992 Apr; 120(4 Pt 2):S139-45. PubMed ID: 1560325
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High dietary 18:3n-3 increases the 18:3n-3 but not the 22:6n-3 content in the whole body, brain, skin, epididymal fat pads, and muscles of suckling rat pups.
    Bowen RA; Clandinin MT
    Lipids; 2000 Apr; 35(4):389-94. PubMed ID: 10858023
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative changes in long-chain fatty acids during fetal and early postnatal development in rats.
    Cunnane SC; Chen ZY
    Am J Physiol; 1992 Jan; 262(1 Pt 2):R14-9. PubMed ID: 1733333
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.