These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 7408786)

  • 41. Transacylation as a chain-termination mechanism in fatty acid synthesis by mammalian fatty acid synthetase. Synthesis of butyrate and hexanoate by lactating cow mammary gland fatty acid synthetase.
    Hansen JK; Knudsen J
    Biochem J; 1980 Jan; 186(1):287-94. PubMed ID: 7370014
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Fatty acid synthase from lactating bovine mammary gland.
    Kumar S; Dodds PF
    Methods Enzymol; 1981; 71 Pt C():86-97. PubMed ID: 7196981
    [No Abstract]   [Full Text] [Related]  

  • 43. The effect of dietary fat on lipogenesis in mammary gland and liver from lactating and virgin mice.
    Smith S; Gagné HT; Pitelka DR; Abraham S
    Biochem J; 1969 Dec; 115(4):807-15. PubMed ID: 5390535
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Influence of lipoprotein lipase and hepatic lipase on the transformation of VLDL and HDL during lipolysis of VLDL.
    Murdoch SJ; Breckenridge WC
    Atherosclerosis; 1995 Dec; 118(2):193-212. PubMed ID: 8770314
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effects of adrenalectomy and glucocorticoid therapy on enzyme activities in mammary and adipose tissues from lactating rats.
    Plucinski T; Baldwin RL
    J Dairy Sci; 1976 Jan; 59(1):157-60. PubMed ID: 2627
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Conjugated linoleic acid-induced milk fat reduction associated with depressed expression of lipogenic genes in lactating Holstein mammary glands.
    Han LQ; Pang K; Li HJ; Zhu SB; Wang LF; Wang YB; Yang GQ; Yang GY
    Genet Mol Res; 2012 Sep; 11(4):4754-64. PubMed ID: 23079976
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effect of variation of trans-fatty acid in lactating rats' diet on lipoprotein lipase activity in mammary gland, liver, and adipose tissue.
    Assumpção RP; dos Santos FD; de Mattos Machado Andrade P; Barreto GF; das Graças Tavares do Carmo M
    Nutrition; 2004 Sep; 20(9):806-11. PubMed ID: 15325692
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Developmental changes in mitochondria during the transition into lactation in the mouse mammary gland.
    Rosano TG; Jones DH
    J Cell Biol; 1976 Jun; 69(3):573-80. PubMed ID: 1270512
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Regulation of acetyl-CoA carboxylase in rat mammary gland. Effects of starvation and of insulin and prolactin deficiency on the fraction of the enzyme in the active form in vivo.
    McNeillie EM; Zammit VA
    Biochem J; 1982 Apr; 204(1):273-80. PubMed ID: 6126184
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Medium-chain fatty acyl-s-4'-phosphopantetheine-fatty acid synthase thioester hydrolase from lactating mammary gland of rat.
    Smith S
    Methods Enzymol; 1981; 71 Pt C():188-200. PubMed ID: 7196979
    [No Abstract]   [Full Text] [Related]  

  • 51. Cholesterol metabolism in the rat lactating mammary gland: the role of cholesteryl ester hydrolase.
    Botham KM
    Lipids; 1991 Nov; 26(11):901-6. PubMed ID: 1805094
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The role of growth hormone, prolactin and insulin-like growth factors in the regulation of rat mammary gland and adipose tissue metabolism during lactation.
    Barber MC; Clegg RA; Finley E; Vernon RG; Flint DJ
    J Endocrinol; 1992 Nov; 135(2):195-202. PubMed ID: 1474326
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Purification and some properties of a medium-chain acyl-thioester hydrolase from lactating-rabbit mammary gland which terminates chain elongation in fatty acid synthesis.
    Knudsen J; Clark S; Dils R
    Biochem J; 1976 Dec; 160(3):683-91. PubMed ID: 1035109
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Acyl-CoA: cholesterol acyltransferase activity in the rat mammary gland: variation during pregnancy and lactation.
    Shand JH; West DW
    Lipids; 1991 Feb; 26(2):150-4. PubMed ID: 2051898
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Alkaline ribonuclease and ribonuclease inhibitor in mammary gland during the lactation cycle and in the R3230AC mammary tumour.
    Liu DK; Williams GH; Fritz PJ
    Biochem J; 1975 Apr; 148(1):67-76. PubMed ID: 1156401
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Regulation of rat mammary-gland uptake of orally administered [1-14C]triolein by insulin and prolactin: evidence for bihormonal control of lipoprotein lipase activity.
    Da Costa TH; Williamson DH
    Biochem J; 1994 May; 300 ( Pt 1)(Pt 1):257-62. PubMed ID: 8198543
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Detection of a kallikrein in the mouse lactating mammary gland: a possible processing enzyme for the epidermal growth factor precursor.
    Jahnke GD; Chao J; Walker MP; Diaugustine RP
    Endocrinology; 1994 Nov; 135(5):2022-9. PubMed ID: 7525260
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Tissue-specific effects of rapid tumour growth on lipid metabolism in the rat during lactation and on litter removal.
    Evans RD; Williamson DH
    Biochem J; 1988 May; 252(1):65-72. PubMed ID: 3421910
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Cholesteryl ester hydrolase: three activities in the lactating rat mammary gland.
    Martinez MJ; Botham KM
    Biochem Soc Trans; 1990 Aug; 18(4):619-20. PubMed ID: 2276472
    [No Abstract]   [Full Text] [Related]  

  • 60. Role of lipoprotein lipase activity on lipoprotein metabolism and the fate of circulating triglycerides in pregnancy.
    Herrera E; Lasunción MA; Gomez-Coronado D; Aranda P; López-Luna P; Maier I
    Am J Obstet Gynecol; 1988 Jun; 158(6 Pt 2):1575-83. PubMed ID: 3287929
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.