These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 7409005)

  • 41. Establishment of pigment cell lineage in embryos of the sea urchin, Hemicentrotus pulcherrimus.
    Kominami T
    Dev Growth Differ; 2000 Feb; 42(1):41-51. PubMed ID: 10831042
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Imaging neural development in embryonic and larval sea urchins.
    Krupke O; Yaguchi S; Yaguchi J; Burke RD
    Methods Mol Biol; 2014; 1128():147-60. PubMed ID: 24567212
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Distribution of apoptosis-like cells in sea urchin early embryogenesis.
    Mizoguchi H; Kudo D; Shimizu Y; Hirota K; Kawai S; Hino A
    Zygote; 2000; 8 Suppl 1():S76. PubMed ID: 11191329
    [No Abstract]   [Full Text] [Related]  

  • 44. Structural and functional identity of ribosomes from eggs and embryos of sea urchins.
    Kedes LH; Stavy L
    J Mol Biol; 1969 Jul; 43(2):337-40. PubMed ID: 5817096
    [No Abstract]   [Full Text] [Related]  

  • 45. A sea urchin in vivo model to evaluate Epithelial-Mesenchymal Transition.
    Romancino DP; Anello L; Lavanco A; Buffa V; Di Bernardo M; Bongiovanni A
    Dev Growth Differ; 2017 Apr; 59(3):141-151. PubMed ID: 28436008
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Latrunculin inhibits the microfilament-mediated processes during fertilization, cleavage and early development in sea urchins and mice.
    Schatten G; Schatten H; Spector I; Cline C; Paweletz N; Simerly C; Petzelt C
    Exp Cell Res; 1986 Sep; 166(1):191-208. PubMed ID: 3743654
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Characteristic reaction of early sea urchin embryos to cytostatic analogs of transmitter substances].
    Buznikov GA; Zvezdina ND; Rogac L; Rakic L; Iurovskaia MA
    Ontogenez; 1987; 18(5):507-12. PubMed ID: 2827084
    [TBL] [Abstract][Full Text] [Related]  

  • 48. ERK1 activation is required for S-phase onset and cell cycle progression after fertilization in sea urchin embryos.
    Philipova R; Kisielewska J; Lu P; Larman M; Huang JY; Whitaker M
    Development; 2005 Feb; 132(3):579-89. PubMed ID: 15634691
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A molecular analysis of hyalin--a substrate for cell adhesion in the hyaline layer of the sea urchin embryo.
    Wessel GM; Berg L; Adelson DL; Cannon G; McClay DR
    Dev Biol; 1998 Jan; 193(2):115-26. PubMed ID: 9473317
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Changes of cell and embryo volume during development of vitelline membrane-free sea urchin embryos.
    Müller WE; Müller-zahn I; Drakulić M; Zahn RK
    Exp Cell Res; 1972 Aug; 73(2):487-95. PubMed ID: 5066249
    [No Abstract]   [Full Text] [Related]  

  • 51. Tubulin-containing structures.
    Suprenant KA
    Methods Cell Biol; 1986; 27():189-215. PubMed ID: 3702754
    [No Abstract]   [Full Text] [Related]  

  • 52. Sea urchin sperm-egg interactions studied with the scanning electron microscope.
    Tegner MJ; Epel D
    Science; 1973 Feb; 179(4074):685-8. PubMed ID: 4734353
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Presence of inositol 1,4,5-trisphosphate receptor, calreticulin, and calsequestrin in eggs of sea urchins and Xenopus laevis.
    Parys JB; McPherson SM; Mathews L; Campbell KP; Longo FJ
    Dev Biol; 1994 Feb; 161(2):466-76. PubMed ID: 8313995
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effects of conditioned media on sea urchin egg development.
    Brachet J; Aimi J
    Exp Cell Res; 1972 May; 72(1):46-55. PubMed ID: 5063506
    [No Abstract]   [Full Text] [Related]  

  • 55. Lipid composition of gametes and embryos of the sea urchin Strongylocentrotus intermedius at early stages of development.
    Kozhina VP; Terekhova TA; Svetashev VI
    Dev Biol; 1978 Feb; 62(2):512-7. PubMed ID: 564307
    [No Abstract]   [Full Text] [Related]  

  • 56. Constraint, flexibility, and phylogenetic history in the evolution of direct development in sea urchins.
    Raff RA
    Dev Biol; 1987 Jan; 119(1):6-19. PubMed ID: 3792635
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Timing of initiation of polyadenylation of preformed RNA in sea urchin and Urechis caupo zygotes.
    Pawlowski PJ; Rodriguez LV
    Dev Biol; 1974 Sep; 40(1):71-7. PubMed ID: 4472405
    [No Abstract]   [Full Text] [Related]  

  • 58. Signal transduction pathways that contribute to CDK1/cyclin B activation during the first mitotic division in sea urchin embryos.
    Salaün P; Le Breton M; Morales J; Bellé R; Boulben S; Mulner-Lorillon O; Cormier P
    Exp Cell Res; 2004 Jun; 296(2):347-57. PubMed ID: 15149864
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Methods for transplantation of sea urchin blastomeres.
    George AN; McClay DR
    Methods Cell Biol; 2019; 150():223-233. PubMed ID: 30777177
    [TBL] [Abstract][Full Text] [Related]  

  • 60. MALATE DEHYDROGENASE: MULTIPLE FORMS IN SEPARATED BLASTOMERES OF SEA URCHIN EMBRYOS.
    MOORE RO; VILLEE CA
    Science; 1963 Oct; 142(3590):389-90. PubMed ID: 14056704
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.