BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 7409853)

  • 1. Effect of concanavaline A on intracellular K+ and Na+ concentration and K+ transport of human lymphocytes.
    Averdunk R; Günther T
    Immunobiology; 1980 Jul; 157(2):132-44. PubMed ID: 7409853
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of the concanavalin A-induced increase in lymphocyte cell membrane permeability by furosemide.
    Averdunk R; Günther T
    Immunobiology; 1980 Dec; 157(4-5):358-64. PubMed ID: 7450817
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of the number of Na+,K+-pump sites after mitogenic activation of lymphocytes.
    Severini A; Prasad KV; Almeida AF; Kaplan JG
    Biochem Cell Biol; 1987 Feb; 65(2):95-104. PubMed ID: 3030372
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The kinetics of ouabain-sensitive ionic transport in the rabbit carotid artery.
    Heidlage JF; Jones AW
    J Physiol; 1981 Aug; 317():243-62. PubMed ID: 7310733
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of extracellular potassium concentration on the sodium-potassium pump rate in human lymphocytes.
    Webb GD; Taylor EA; Oh VM; Yeo SB; Ng LL
    Clin Sci (Lond); 1995 Jun; 88(6):695-700. PubMed ID: 7634754
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Concanavalin A causes an increase in sodium permeability and intracellular sodium content of pig lymphocytes.
    Felber SM; Brand MD
    Biochem J; 1983 Mar; 210(3):893-7. PubMed ID: 6223629
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cation fluxes and volume regulation by human lymphocytes.
    Bui AH; Wiley JS
    J Cell Physiol; 1981 Jul; 108(1):47-54. PubMed ID: 7263767
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Na+ and K+ transport at basolateral membranes of epithelial cells. II. K+ efflux and stoichiometry of the Na,K-ATPase.
    Cox TC; Helman SI
    J Gen Physiol; 1986 Mar; 87(3):485-502. PubMed ID: 2420920
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sodium ion influx in proliferating lymphocytes: an early component of the mitogenic signal.
    Prasad KV; Severini A; Kaplan JG
    Arch Biochem Biophys; 1987 Feb; 252(2):515-25. PubMed ID: 3028270
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Is ouabain-sensitive rubidium or potassium uptake a measure of sodium pump activity in isolated cardiac muscle?
    Akera T; Yamamoto S; Temma K; Kim DH; Brody TM
    Biochim Biophys Acta; 1981 Feb; 640(3):779-90. PubMed ID: 6260177
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ouabain-sensitive ion fluxes in the smooth muscle of the guinea-pig's taenia coli.
    Widdicombe JH
    J Physiol; 1977 Apr; 266(2):235-54. PubMed ID: 857001
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interdependence of ion transport and the action of quabain in heart muscle.
    Bentfeld M; Lüllmann H; Peters T; Proppe D
    Br J Pharmacol; 1977 Sep; 61(1):19-27. PubMed ID: 912208
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Na,K-ATPase polypeptide upregulation responses in lens epithelium.
    Delamere NA; Manning RE; Liu L; Moseley AE; Dean WL
    Invest Ophthalmol Vis Sci; 1998 Apr; 39(5):763-8. PubMed ID: 9538883
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of mitogens on sodium-potassium transport, 3H-ouabain binding, and adenosine triphosphatase activity in lymphocytes.
    Averdunk R; Lauf PK
    Exp Cell Res; 1975 Jul; 93(2):331-42. PubMed ID: 125654
    [No Abstract]   [Full Text] [Related]  

  • 15. Regulation of sodium and potassium transport in phytohemagglutinin-stimulated human blood lymphocytes.
    Segel GB; Simon W; Lichtman MA
    J Clin Invest; 1979 Sep; 64(3):834-41. PubMed ID: 224078
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence for the genetic control of the sodium pump density in HeLa cells.
    Boardman L; Huett M; Lamb JF; Newton JP; Polson JM
    J Physiol; 1974 Sep; 241(3):771-94. PubMed ID: 4279985
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The interaction of monovalent cations with the sodium pump of low-potassium goat erythrocytes.
    Cavieres JD; Ellory JC
    J Physiol; 1977 Sep; 271(1):289-318. PubMed ID: 144181
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The apparent discrepancy of ouabain inhibition of cation transport and of lymphocyte proliferation is explained by time-dependency of ouabain binding.
    Segel GB; Lichtman MA
    J Cell Physiol; 1980 Jul; 104(1):21-6. PubMed ID: 7440642
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetics of ouabain binding and changes in cellular sodium content, 42K+ transport and contractile state during ouabain exposure in cultured chick heart cells.
    Kim D; Barry WH; Smith TW
    J Pharmacol Exp Ther; 1984 Nov; 231(2):326-33. PubMed ID: 6092615
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of growth in low potassium medium or ouabain on membrane Na,K-ATPase, cation transport, and contractility in cultured chick heart cells.
    Kim D; Marsh JD; Barry WH; Smith TW
    Circ Res; 1984 Jul; 55(1):39-48. PubMed ID: 6086172
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.