These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 7410239)

  • 1. Effects of temporary thershold shift on combination-tone generation and on two-tone suppression.
    Smoorenburg GF
    Hear Res; 1980 Jun; 2(3-4):347-55. PubMed ID: 7410239
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Residual effects in monaural temporary threshold shifts to pure tones.
    Rajan R; Johnstone BM
    Hear Res; 1983 Nov; 12(2):185-97. PubMed ID: 6643290
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intense sounds may alter the mechanical properties of the cochlear partition.
    McFadden D
    J Acoust Soc Am; 1983 Aug; 74(2):447-55. PubMed ID: 6619422
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Suppression and (2f1-f2)-difference tones in a nonlinear cochlear preprocessing model with active feedback.
    Zwicker E
    J Acoust Soc Am; 1986 Jul; 80(1):163-76. PubMed ID: 3745662
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crossed cochlear influences on monaural temporary threshold shifts.
    Rajan R; Johnstone BM
    Hear Res; 1983 Mar; 9(3):279-94. PubMed ID: 6841284
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-linear aspects of outer hair cell transduction and the temporary threshold shifts after acoustic trauma.
    Patuzzi R
    Audiol Neurootol; 2002; 7(1):17-20. PubMed ID: 11914520
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Locus of generation for the 2f1-f2 vs 2f2-f1 distortion-product otoacoustic emissions in normal-hearing humans revealed by suppression tuning, onset latencies, and amplitude correlations.
    Martin GK; Jassir D; Stagner BB; Whitehead ML; Lonsbury-Martin BL
    J Acoust Soc Am; 1998 Apr; 103(4):1957-71. PubMed ID: 9566319
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reduced temporary and permanent hearing losses with multiple tone exposures.
    Cody AR; Johnstone BM
    Hear Res; 1982 Apr; 6(3):291-301. PubMed ID: 7085486
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recovery time of the temporary threshold shift for delayed evoked otoacoustic emissions and tone bursts.
    Rossi G; Solero P; Rolando M; Olina M
    ORL J Otorhinolaryngol Relat Spec; 1991; 53(1):15-8. PubMed ID: 2008288
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Manifestations of intense noise stimulation on spontaneous otoacoustic emission and threshold microstructure: experiment and model.
    Furst M; Reshef I; Attias J
    J Acoust Soc Am; 1992 Feb; 91(2):1003-14. PubMed ID: 1313463
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two-tone suppression in a locally active nonlinear model of the cochlea.
    Kanis LJ; de Boer E
    J Acoust Soc Am; 1994 Oct; 96(4):2156-65. PubMed ID: 7963029
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two-tone suppression and combination tone generation as computations performed by the Hopf cochlea.
    Stoop R; Kern A
    Phys Rev Lett; 2004 Dec; 93(26 Pt 1):268103. PubMed ID: 15698025
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrical stimulation of cochlear efferents at the round window reduces auditory desensitization in guinea pigs. II. Dependence on level of temporary threshold shifts.
    Rajan R; Johnstone BM
    Hear Res; 1988 Oct; 36(1):75-88. PubMed ID: 3198522
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cochlear mechanics: implications of electrophysiological and acoustical observations.
    Kim DO
    Hear Res; 1980 Jun; 2(3-4):297-317. PubMed ID: 7410234
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Short-term effectiveness of medial efferents does not predict susceptibility to temporary threshold shift in the guinea pig.
    Zennaro O; Erre JP; Aran JM; Dauman R
    Acta Otolaryngol; 1998 Sep; 118(5):681-4. PubMed ID: 9840504
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cochlear models: two-tone suppression and the second filter.
    Hall JL
    J Acoust Soc Am; 1980 May; 67(5):1722-8. PubMed ID: 7372926
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acoustic trauma: single neuron basis for the "half-octave shift".
    Cody AR; Johnstone BM
    J Acoust Soc Am; 1981 Sep; 70(3):707-11. PubMed ID: 7288033
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Maturation of cochlear nonlinearity as measured by distortion product otoacoustic emission suppression growth in humans.
    Abdala C; Chatterjee M
    J Acoust Soc Am; 2003 Aug; 114(2):932-43. PubMed ID: 12942974
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of reversible noise exposure on the suppression tuning of rabbit distortion-product otoacoustic emissions.
    Howard MA; Stagner BB; Lonsbury-Martin BL; Martin GK
    J Acoust Soc Am; 2002 Jan; 111(1 Pt 1):285-96. PubMed ID: 11831802
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of acoustic overstimulation on 2f1-f2 distortion product in the cochlear microphonics.
    Yoshida M; Aoyagi M; Makishima K
    Hear Res; 1995 Jan; 82(1):59-64. PubMed ID: 7744714
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.