These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 7410239)

  • 21. Two-tone suppression and distortion production on the basilar membrane in the hook region of cat and guinea pig cochleae.
    Rhode WS; Cooper NP
    Hear Res; 1993 Mar; 66(1):31-45. PubMed ID: 8473244
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Physiological and psychophysical measures from humans with temporary threshold shift.
    Klein AJ; Mills JH
    J Acoust Soc Am; 1981 Oct; 70(4):1045-53. PubMed ID: 7288041
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Low-frequency bias tone suppression of auditory-nerve responses to low-level clicks and tones.
    Nam H; Guinan JJ
    Hear Res; 2016 Nov; 341():66-78. PubMed ID: 27550413
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Two-tone suppression in cochlear mechanics.
    Cooper NP
    J Acoust Soc Am; 1996 May; 99(5):3087-98. PubMed ID: 8642119
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An active process in cochlear mechanics.
    Davis H
    Hear Res; 1983 Jan; 9(1):79-90. PubMed ID: 6826470
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rapid changes in the frequency tuning of neurons in cat auditory cortex resulting from pure-tone-induced temporary threshold shift.
    Calford MB; Rajan R; Irvine DR
    Neuroscience; 1993 Aug; 55(4):953-64. PubMed ID: 8232905
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of auditory fatigue on psychophysical estimates of cochlear nonlinearities.
    Norton SJ; Mott JB
    J Acoust Soc Am; 1987 Jul; 82(1):80-7. PubMed ID: 3624644
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cochlear tuning properties: concurrent basilar membrane and single nerve fiber measurements.
    Evans EF; Wilson JP
    Science; 1975 Dec; 190(4220):1218-21. PubMed ID: 1198110
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Loud sound-induced changes in cochlear mechanics.
    Fridberger A; Zheng J; Parthasarathi A; Ren T; Nuttall A
    J Neurophysiol; 2002 Nov; 88(5):2341-8. PubMed ID: 12424275
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Afferent synaptic changes in auditory hair cells during noise-induced temporary threshold shift.
    Henry WR; Mulroy MJ
    Hear Res; 1995 Apr; 84(1-2):81-90. PubMed ID: 7642458
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A biophysical model of cochlear processing: intensity dependence of pure tone responses.
    Shamma SA; Chadwick RS; Wilbur WJ; Morrish KA; Rinzel J
    J Acoust Soc Am; 1986 Jul; 80(1):133-45. PubMed ID: 3745659
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Two-tone suppression in the basilar membrane of the cochlea: mechanical basis of auditory-nerve rate suppression.
    Ruggero MA; Robles L; Rich NC
    J Neurophysiol; 1992 Oct; 68(4):1087-99. PubMed ID: 1432070
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Interpretation of distortion product otoacoustic emission measurements. II. Estimating tuning characteristics using three stimulus tones.
    Mills DM
    J Acoust Soc Am; 1998 Jan; 103(1):507-23. PubMed ID: 9440336
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Study of mechanical motions in the basal region of the chinchilla cochlea.
    Rhode WS; Recio A
    J Acoust Soc Am; 2000 Jun; 107(6):3317-32. PubMed ID: 10875377
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Recovery of eighth nerve action potential thresholds after exposure to short, intense pure tones: similarities with temporary threshold shift.
    Yates GK; Cody AR; Johnstone BM
    Hear Res; 1983 Dec; 12(3):305-22. PubMed ID: 6668255
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Olivocochlear activity and temporary threshold shift-susceptibility in humans.
    Wagner W; Heppelmann G; Kuehn M; Tisch M; Vonthein R; Zenner HP
    Laryngoscope; 2005 Nov; 115(11):2021-8. PubMed ID: 16319617
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Multicomponent stimulus interactions observed in basilar-membrane vibration in the basal region of the chinchilla cochlea.
    Rhode WS; Recio A
    J Acoust Soc Am; 2001 Dec; 110(6):3140-54. PubMed ID: 11785815
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nonlinear phenomena as observed in the ear canal and at the auditory nerve.
    Fahey PF; Allen JB
    J Acoust Soc Am; 1985 Feb; 77(2):599-612. PubMed ID: 3973231
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of ipsilateral and contralateral low-frequency narrow-band noise on temporary threshold shift in humans.
    Quaranta A; Scaringi A; Fernandez-Vega S; Quaranta N
    Acta Otolaryngol; 2003 Jan; 123(2):164-7. PubMed ID: 12701733
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The shape of 2f1-f2 suppression tuning curves reflects basilar membrane specializations in the mustached bat, Pteronotus parnellii.
    Frank G; Kössl M
    Hear Res; 1995 Mar; 83(1-2):151-60. PubMed ID: 7607981
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.