BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 7410337)

  • 1. Charge effects on the dynamic quenching of fluorescence of 1,N6-ethenoadenosine oligophosphates by iodide, thallium (I) and acrylamide.
    Ando T; Asai H
    J Biochem; 1980 Jul; 88(1):255-64. PubMed ID: 7410337
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electric potential at regions near the two specific thiols of heavy meromyosin determined by the fluorescence quenching technique. I. Effect of ATP.
    Ando T; Fujisaki H; Asai H
    J Biochem; 1980 Jul; 88(1):265-76. PubMed ID: 6997285
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amphoteric charge distribution at the enzymatic site of 1,N6-ethenoadenosine triphosphate-binding heavy meromyosin determined by dynamic fluorescence quenching.
    Miyata H; Asai H
    J Biochem; 1981 Jul; 90(1):133-9. PubMed ID: 7026547
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The eosin-5-maleimide binding site on human erythrocyte band 3: investigation of membrane sidedness and location of charged residues by triplet state quenching.
    Pan RJ; Cherry RJ
    Biochemistry; 1998 Jul; 37(28):10238-45. PubMed ID: 9665731
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A fluorescence double-quenching study of native lipoproteins in an animal model of manganese deficiency.
    Taylor PN; Patterson HH; Klimis-Tavantzis DJ
    Biol Trace Elem Res; 1997; 60(1-2):69-80. PubMed ID: 9404676
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescence studies on the nucleotide binding domains of the P-glycoprotein multidrug transporter.
    Liu R; Sharom FJ
    Biochemistry; 1997 Mar; 36(10):2836-43. PubMed ID: 9062112
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluorescence quenching of dimeric and monomeric forms of yeast hexokinase (PII): effect of substrate binding steady-state and time-resolved fluorescence studies.
    Maity H; Jarori GK
    Physiol Chem Phys Med NMR; 2002; 34(1):43-60. PubMed ID: 12403274
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acrylamide and iodide fluorescence quenching as a structural probe of tryptophan microenvironment in bovine lens crystallins.
    Phillips SR; Wilson LJ; Borkman RF
    Curr Eye Res; 1986 Aug; 5(8):611-9. PubMed ID: 3757547
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An investigation of the electronic and steric environments of tyrosyl residues in ribonuclease A and Erwinia carotovora L-asparaginase through fluorescence quenching by caesium, iodide and phosphate ions.
    Homer RB; Allsopp SR
    Biochim Biophys Acta; 1976 Jun; 434(2):297-310. PubMed ID: 986170
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorescence of native single-Trp mutants in the lactose permease from Escherichia coli: structural properties and evidence for a substrate-induced conformational change.
    Weitzman C; Consler TG; Kaback HR
    Protein Sci; 1995 Nov; 4(11):2310-8. PubMed ID: 8563627
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorescence quenching of coumarins by halide ions.
    Giri R
    Spectrochim Acta A Mol Biomol Spectrosc; 2004 Mar; 60(4):757-63. PubMed ID: 15036085
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Viscosity dependence of acrylamide quenching of ribonuclease T1 fluorescence. The gating mechanism.
    Somogyi B; Norman JA; Punyiczki M; Rosenberg A
    Biochim Biophys Acta; 1992 Feb; 1119(1):81-9. PubMed ID: 1540639
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative analysis of cation binding to the adenosine nucleotides using the variable ionic strength method: validation of the Debye-Hückel-Onsager theory of electrophoresis in the absence of counterion binding.
    Stellwagen E; Stellwagen NC
    Electrophoresis; 2007 Apr; 28(7):1053-62. PubMed ID: 17295422
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigating tryptophan quenching of fluorescein fluorescence under protolytic equilibrium.
    Togashi DM; Szczupak B; Ryder AG; Calvet A; O'Loughlin M
    J Phys Chem A; 2009 Mar; 113(12):2757-67. PubMed ID: 19254018
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluorescence quenching at interfaces and the permeation of acrylamide and iodide across phospholipid bilayers.
    Moro F; Goñi FM; Urbaneja MA
    FEBS Lett; 1993 Sep; 330(2):129-32. PubMed ID: 8365482
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distance-dependent fluorescence quenching of tryptophan by acrylamide.
    Lakowicz JR; Zelent B; Gryczynski I; Kuśba J; Johnson ML
    Photochem Photobiol; 1994 Sep; 60(3):205-14. PubMed ID: 7972370
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dependence of fluorescence quenching of a poly(p-phenyleneethynylene) polyelectrolyte on the electrostatic and hydrophobic properties of the quencher.
    Kaur P; Wu M; Anzaldi L; Waldeck DH; Xue C; Liu H
    Langmuir; 2007 Dec; 23(26):13203-8. PubMed ID: 18020468
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorescence studies of polyriboadenylic acid and dinucleoside monophosphates containing 1,N6-ethenoadenosine.
    Kubota Y; Sanjoh A; Fujisaki Y
    Nucleic Acids Symp Ser; 1982; (11):277-80. PubMed ID: 6963952
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic docking and electron-transfer between cytochrome b5 and a suite of myoglobin surface-charge mutants. Introduction of a functional-docking algorithm for protein-protein complexes.
    Liang ZX; Kurnikov IV; Nocek JM; Mauk AG; Beratan DN; Hoffman BM
    J Am Chem Soc; 2004 Mar; 126(9):2785-98. PubMed ID: 14995196
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluorescence quenching studies of the rat ovarian LH/hCG receptor.
    Scsuková S; Jezová M; Vranová J; Tatara M; Kolena J
    Gen Physiol Biophys; 1996 Dec; 15(6):451-62. PubMed ID: 9248831
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.