BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

423 related articles for article (PubMed ID: 7410481)

  • 1. Isolation and characterization of postsynaptic densities from various brain regions: enrichment of different types of postsynaptic densities.
    Carlin RK; Grab DJ; Cohen RS; Siekevitz P
    J Cell Biol; 1980 Sep; 86(3):831-45. PubMed ID: 7410481
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of Na+-independent GABA and flunitrazepam binding sites in preparations of synaptic membranes and postsynaptic densities isolated from canine cerebral cortex and cerebellum.
    Carlin RK; Siekevitz P
    J Neurochem; 1984 Oct; 43(4):1011-7. PubMed ID: 6088689
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Function of a calmodulin in postsynaptic densities. III. Calmodulin-binding proteins of the postsynaptic density.
    Carlin RK; Grab DJ; Siekevitz P
    J Cell Biol; 1981 Jun; 89(3):449-55. PubMed ID: 6265467
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electron tomographic structure and protein composition of isolated rat cerebellar, hippocampal and cortical postsynaptic densities.
    Farley MM; Swulius MT; Waxham MN
    Neuroscience; 2015 Sep; 304():286-301. PubMed ID: 26215919
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of proteins involved with cyclic AMP metabolism between synaptic membrane and postsynaptic density preparations isolated from canine cerebral cortex and cerebellum.
    Aoki C; Carlin RK; Siekevitz P
    J Neurochem; 1985 Mar; 44(3):966-78. PubMed ID: 2983024
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biochemical and morphological comparison of postsynaptic densities prepared from rat, hamster, and monkey brains by phase partitioning.
    Gurd JW; Gordon-Weeks P; Evans WH
    J Neurochem; 1982 Oct; 39(4):1117-24. PubMed ID: 7119784
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A study of the spatial protein organization of the postsynaptic density isolated from porcine cerebral cortex and cerebellum.
    Yun-Hong Y; Chih-Fan C; Chia-Wei C; Yen-Chung C
    Mol Cell Proteomics; 2011 Oct; 10(10):M110.007138. PubMed ID: 21715321
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The structure of postsynaptic densities isolated from dog cerebral cortex. I. Overall morphology and protein composition.
    Cohen RS; Blomberg F; Berzins K; Siekevitz P
    J Cell Biol; 1977 Jul; 74(1):181-203. PubMed ID: 194906
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Brain postsynaptic densities: the relationship to glial and neuronal filaments.
    Matus A; Pehling G; Ackermann M; Maeder J
    J Cell Biol; 1980 Nov; 87(2 Pt 1):346-59. PubMed ID: 7000794
    [TBL] [Abstract][Full Text] [Related]  

  • 10. P400 protein is one of the major substrates for Ca2+/calmodulin-dependent protein kinase II in the postsynaptic density-enriched fraction isolated from rat cerebral cortex, hippocampus and cerebellum.
    Suzuki T; Abe-Dohmae S; Tanaka R
    Neurochem Int; 1992 Jan; 20(1):61-7. PubMed ID: 1338970
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interprotein disulfide bonds formed during isolation process tighten the structure of the postsynaptic density.
    Lai SL; Chiang SF; Chen IT; Chow WY; Chang YC
    J Neurochem; 1999 Nov; 73(5):2130-8. PubMed ID: 10537073
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid isolation of synaptoneurosomes and postsynaptic densities from adult mouse hippocampus.
    Villasana LE; Klann E; Tejada-Simon MV
    J Neurosci Methods; 2006 Nov; 158(1):30-6. PubMed ID: 16797717
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Specific interaction of postsynaptic densities with membrane rafts isolated from synaptic plasma membranes.
    Liu Q; Yao WD; Suzuki T
    J Neurogenet; 2013 Jun; 27(1-2):43-58. PubMed ID: 23527882
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isolation of postsynaptic densities from day-old chicken brain.
    Murakami K; Gordon-Weeks PR; Rose SP
    J Neurochem; 1986 Feb; 46(2):340-8. PubMed ID: 3941311
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activation of calpain may alter the postsynaptic density structure and modulate anchoring of NMDA receptors.
    Vinade L; Petersen JD; Do K; Dosemeci A; Reese TS
    Synapse; 2001 Jun; 40(4):302-9. PubMed ID: 11309846
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Localization of type I benzodiazepine receptors to postsynaptic densities in bovine brain.
    Trifiletti RR; Snyder SH
    J Neurosci; 1985 Apr; 5(4):1049-57. PubMed ID: 2984357
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of novel glycoprotein components of synaptic membranes and postsynaptic densities, gp65 and gp55, with a monoclonal antibody.
    Hill IE; Selkirk CP; Hawkes RB; Beesley PW
    Brain Res; 1988 Sep; 461(1):27-43. PubMed ID: 3224275
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of fodrin as a major calmodulin-binding protein in postsynaptic density preparations.
    Carlin RK; Bartelt DC; Siekevitz P
    J Cell Biol; 1983 Feb; 96(2):443-8. PubMed ID: 6833363
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural changes at synapses after delayed perfusion fixation in different regions of the mouse brain.
    Tao-Cheng JH; Gallant PE; Brightman MW; Dosemeci A; Reese TS
    J Comp Neurol; 2007 Apr; 501(5):731-40. PubMed ID: 17299754
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Major differences in the concanavalin A binding glycoproteins of postsynaptic densities from rat forebrain and cerebellum.
    Gordon-Weeks PR; Harding S
    Brain Res; 1983 Oct; 277(2):380-5. PubMed ID: 6640303
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.