BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 741059)

  • 21. [Statistical analysis of the parameters defining the cortical visual evoked potentials in the phases of the sleep-wake cycle].
    Sigüenza JA; de Andrés I; Ibarz JM; Reinoso-Suarez F
    Rev Esp Fisiol; 1983 Sep; 39(3):253-8. PubMed ID: 6658141
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Conditioned modification of viscerosensory evoked potentials during sleep and wakefulness in cats.
    Kukorelli T; Juhász G; Adám G
    Acta Physiol Hung; 1983; 61(4):247-58. PubMed ID: 6650191
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Specific neurons for wakefulness in the posterior hypothalamus in the cat].
    Vanni-Mercier G; Sakai K; Jouvet M
    C R Acad Sci III; 1984; 298(7):195-200. PubMed ID: 6424901
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of trihexyphenydil, the structural analog of phencyclidine, on neocortical and hippocampal electrical activity in sleep-waking cycle.
    Nachkebia N; Mchedlidze O; Chkhartishvili E; Dzadzamia Sh; Oniani T
    Georgian Med News; 2009 Apr; (169):81-7. PubMed ID: 19430052
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Correlation dimension changes of the EEG during the wakefulness-sleep cycle.
    Molnár M; Skinner JE
    Acta Biochim Biophys Hung; 1991-1992; 26(1-4):121-5. PubMed ID: 1844795
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Effect of various doses of ethanol on the structure of the wakefulness-sleep cycle in cats].
    Gogichadze MV; Omiadze ND; Lomashvili IP; Naveriani LG
    Fiziol Zh SSSR Im I M Sechenova; 1989 Feb; 75(2):177-83. PubMed ID: 2721761
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Dynamics of unit activity of the gigantocellular tegmental field in the sleep-wakefulness cycle of rats].
    Gvetadze LB; Mandzhevidze ShD; Oniani TN
    Fiziol Zh SSSR Im I M Sechenova; 1988 Jan; 74(1):32-40. PubMed ID: 3356265
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [The effect of low-frequency electric stimulation of the caudate nucleus on the electrical activity of the cortex and on the sleep-wakefulness cycle].
    Oniani TN; Keshelava-Gogichadze MV
    Fiziol Zh SSSR Im I M Sechenova; 1976 Jan; 62(1):29-37. PubMed ID: 1278493
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Dynamics of the neuronal activity of midbrain reticular nuclei in the sleep-wakefulness cycle].
    Oniani TN; Gvetadze LB; Mandzhavidze ShD
    Neirofiziologiia; 1984; 16(5):678-90. PubMed ID: 6514063
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Dynamics of neuronal activity in the lateral preoptic area of hypothalamus in the course of sleep-waking cycle].
    Suntsova NV; Dergacheva OIu
    Zh Vyssh Nerv Deiat Im I P Pavlova; 2002; 52(5):592-601. PubMed ID: 12449838
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Behavioral and electrophysiological patterns of wakefulness-sleep states in a lizard.
    Ayala-Guerrero F; Huitrón Reséndiz S
    Bol Estud Med Biol; 1991; 39(1-4):9-14. PubMed ID: 1814316
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The relationship of excessive exploratory behavior in wakefulness to paradoxical sleep without atonia.
    Morrison AR; Mann GL; Hendricks JC
    Sleep; 1981 Sep; 4(3):247-57. PubMed ID: 7302456
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Neurochemical regulation of the states of alertness.
    Gaillard JM
    Ann Clin Res; 1985; 17(5):175-84. PubMed ID: 2867732
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Neuronal activity of the cat visual cortex during the sleep--wakefulness cycle].
    Mukhametov LM; Strokova IG
    Neirofiziologiia; 1976; 8(4):343-50. PubMed ID: 822359
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Role of basolateral amygdaloid nuclei in sleep and wakeful state regulation].
    Zhu GQ; Zhong MK; Zhang JX; Zhao LZ; Ke DP; Wang M; Shi L
    Sheng Li Xue Bao; 1998 Dec; 50(6):688-92. PubMed ID: 11367683
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterization and mapping of sleep-waking specific neurons in the basal forebrain and preoptic hypothalamus in mice.
    Takahashi K; Lin JS; Sakai K
    Neuroscience; 2009 Jun; 161(1):269-92. PubMed ID: 19285545
    [TBL] [Abstract][Full Text] [Related]  

  • 37. EEG bands during wakefulness, slow-wave and paradoxical sleep as a result of principal component analysis in man.
    Corsi-Cabrera M; Guevara MA; Del Río-Portilla Y; Arce C; Villanueva-Hernández Y
    Sleep; 2000 Sep; 23(6):738-44. PubMed ID: 11007440
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Intracerebral sites of action of estrogen on the sleep-wakefulness circadian rhythm in female rats].
    Matsushima M
    Fukuoka Igaku Zasshi; 1990 Jan; 81(1):48-67. PubMed ID: 2323715
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cortical visual evoked potentials during the sleep wakefulness cycle of the freely moving cat. Characterization and statistical comparisons.
    Sigüenza JA; De Andres I; Ibarz JM; Reinoso-Suarez F
    Electroencephalogr Clin Neurophysiol; 1984 Apr; 59(2):165-71. PubMed ID: 6200310
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Reflection of tolerance to alcohol in the structure of the sleep wakefulness cycle.
    Gogichadze M; Nemsadze M; Lortkipanidze N; Khachaturovy E; Oniani N
    Georgian Med News; 2014 Oct; (235):87-92. PubMed ID: 25416225
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.