These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 7412234)

  • 21. One-dimensional model for propagation of a pressure wave in a model of the human arterial network: comparison of theoretical and experimental results.
    Saito M; Ikenaga Y; Matsukawa M; Watanabe Y; Asada T; Lagrée PY
    J Biomech Eng; 2011 Dec; 133(12):121005. PubMed ID: 22206422
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Pulse-wave propagation in the arterial system of the diamond python Morelia spilotes.
    Avolio AP; O'Rourke MF; Webster ME
    Am J Physiol; 1983 Dec; 245(6):R831-6. PubMed ID: 6660328
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Arterial pulse attenuation prediction using the decaying rate of a pressure wave in a viscoelastic material model.
    Menacho J; Rotllant L; Molins JJ; Reyes G; García-Granada AA; Balcells M; Martorell J
    Biomech Model Mechanobiol; 2018 Apr; 17(2):589-603. PubMed ID: 29168070
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Inflation waves induced by axial acceleration of the aorta.
    Elad D; Foux A; Lanir Y; Kivity Y
    J Biomech Eng; 1986 Aug; 108(3):281-8. PubMed ID: 3747472
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The dynamic and static elastic response of the abdominal aorta of the dog.
    Newman DL; Bowden NL; Gosling RG
    Cardiovasc Res; 1975 Sep; 9(5):679-84. PubMed ID: 1201576
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rheological approaches of arteries.
    Bauer RD
    Biorheology Suppl; 1984; 1():159-67. PubMed ID: 6591971
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biomechanical behavior of the arterial wall and its numerical characterization.
    Holzapfel GA; Weizsäcker HW
    Comput Biol Med; 1998 Jul; 28(4):377-92. PubMed ID: 9805198
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Regional differences in viscosity, elasticity and wall buffering function in systemic arteries: pulse wave analysis of the arterial pressure-diameter relationship].
    Bia D; Aguirre I; Zócalo Y; Devera L; Cabrera Fischer E; Armentano R
    Rev Esp Cardiol; 2005 Feb; 58(2):167-74. PubMed ID: 15743563
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Arterial elastance and wave reflection augmentation of systolic blood pressure: deleterious effects and implications for therapy.
    Nichols WW; Edwards DG
    J Cardiovasc Pharmacol Ther; 2001 Jan; 6(1):5-21. PubMed ID: 11452332
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An evolution of pulse speed in arteries.
    Demiray H
    Bull Math Biol; 1996 Jan; 58(1):129-40. PubMed ID: 8819757
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Modelling the arterial wall by finite elements.
    Mosora F; Harmant A; Bernard C; Fossion A; Pochet T; Juchmes J; Cescotto S
    Arch Int Physiol Biochim Biophys; 1993; 101(3):185-91. PubMed ID: 7691211
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A mathematical study of non-Newtonian blood flow through elastic arteries.
    Mazumdar J; Ang KC; Soh LL
    Australas Phys Eng Sci Med; 1991 Jun; 14(2):65-73. PubMed ID: 1747083
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Arterial mechanics in the fin whale suggest a unique hemodynamic design.
    Shadwick RE; Gosline JM
    Am J Physiol; 1994 Sep; 267(3 Pt 2):R805-18. PubMed ID: 8092327
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Impedance matching at arterial bifurcations.
    Brown N
    J Biomech; 1993 Jan; 26(1):59-67. PubMed ID: 8423169
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Numerical modeling of fluid-structure interaction in arteries with anisotropic polyconvex hyperelastic and anisotropic viscoelastic material models at finite strains.
    Balzani D; Deparis S; Fausten S; Forti D; Heinlein A; Klawonn A; Quarteroni A; Rheinbach O; Schröder J
    Int J Numer Method Biomed Eng; 2016 Oct; 32(10):. PubMed ID: 26509253
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of length on the fundamental resonance frequency of arterial models having radial dilatation.
    Wang YY; Lia WC; Hsiu H; Jan MY; Wang WK
    IEEE Trans Biomed Eng; 2000 Mar; 47(3):313-8. PubMed ID: 10743772
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Changes in membrane potential of cells of smooth muscles of vessels in response to tension].
    Orlov RS; Plekhanov IP
    Dokl Akad Nauk SSSR; 1967; 175(1):254-5. PubMed ID: 5630348
    [No Abstract]   [Full Text] [Related]  

  • 38. Stress-modulated growth, residual stress, and vascular heterogeneity.
    Taber LA; Humphrey JD
    J Biomech Eng; 2001 Dec; 123(6):528-35. PubMed ID: 11783722
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A quasi-linear constitutive relation for arterial wall materials.
    Demiray H
    J Biomech; 1996 Aug; 29(8):1011-4. PubMed ID: 8817367
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Pulse wave propagation in a model human arterial network: Assessment of 1-D visco-elastic simulations against in vitro measurements.
    Alastruey J; Khir AW; Matthys KS; Segers P; Sherwin SJ; Verdonck PR; Parker KH; Peiró J
    J Biomech; 2011 Aug; 44(12):2250-8. PubMed ID: 21724188
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.