These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 7412242)

  • 1. Long-term torsional creep in compact bone.
    Lakes R; Saha S
    J Biomech Eng; 1980 May; 102(2):178-80. PubMed ID: 7412242
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cement line motion in bone.
    Lakes R; Saha S
    Science; 1979 May; 204(4392):501-3. PubMed ID: 432653
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the torsional properties of single osteons.
    Lakes R
    J Biomech; 1995 Nov; 28(11):1409-10. PubMed ID: 8522553
    [No Abstract]   [Full Text] [Related]  

  • 4. Some viscoplastic characteristics of bovine and human cortical bone.
    Fondrk M; Bahniuk E; Davy DT; Michaels C
    J Biomech; 1988; 21(8):623-30. PubMed ID: 3170617
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomechanical response of bovine temporomandibular joint disc to prolonged tensile stress.
    Tanaka E; Aoyama J; Tanaka M; Watanabe M; Hattori Y; Hanaoka K; Tanne K
    Arch Oral Biol; 2002 May; 47(5):413-6. PubMed ID: 12015223
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tensile testing of bone over a wide range of strain rates: effects of strain rate, microstructure and density.
    Wright TM; Hayes WC
    Med Biol Eng; 1976 Nov; 14(6):671-80. PubMed ID: 994579
    [No Abstract]   [Full Text] [Related]  

  • 7. Physical characteristics affecting the tensile failure properties of compact bone.
    Currey JD
    J Biomech; 1990; 23(8):837-44. PubMed ID: 2384495
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Long-term fatigue behavior of compact bone at low strain magnitude and rate.
    Schaffler MB; Radin EL; Burr DB
    Bone; 1990; 11(5):321-6. PubMed ID: 2252810
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of the mechanical properties of demineralized bone.
    Summitt MC; Reisinger KD
    J Biomed Mater Res A; 2003 Dec; 67(3):742-50. PubMed ID: 14613221
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cosserat micromechanics of human bone: strain redistribution by a hydration sensitive constituent.
    Park HC; Lakes RS
    J Biomech; 1986; 19(5):385-97. PubMed ID: 3733764
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of temperature, stress and microstructure on the creep of compact bovine bone.
    Rimnac CM; Petko AA; Santner TJ; Wright TM
    J Biomech; 1993 Mar; 26(3):219-28. PubMed ID: 8468335
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A fatigue damage model for the cement-bone interface.
    Kim DG; Miller MA; Mann KA
    J Biomech; 2004 Oct; 37(10):1505-12. PubMed ID: 15336925
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tensile yield in compact bone is determined by strain, post-yield behaviour by mineral content.
    Currey JD
    J Biomech; 2004 Apr; 37(4):549-56. PubMed ID: 14996567
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On shear properties of trabecular bone under torsional loading: effects of bone marrow and strain rate.
    Kasra M; Grynpas MD
    J Biomech; 2007; 40(13):2898-903. PubMed ID: 17448478
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural consequences of transcortical holes in long bones loaded in torsion.
    Hipp JA; Edgerton BC; An KN; Hayes WC
    J Biomech; 1990; 23(12):1261-8. PubMed ID: 2292605
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanical and morphological effects of strain rate on fatigue of compact bone.
    Schaffler MB; Radin EL; Burr DB
    Bone; 1989; 10(3):207-14. PubMed ID: 2803855
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of compact bone failure under two different loading rates: experimental and modelling approaches.
    Pithioux M; Subit D; Chabrand P
    Med Eng Phys; 2004 Oct; 26(8):647-53. PubMed ID: 15471692
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cycle-dependent and time-dependent bone fracture with repeated loading.
    Carter DR; Caler WE
    J Biomech Eng; 1983 May; 105(2):166-70. PubMed ID: 6865359
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic creep behavior of acrylic bone cement.
    Verdonschot N; Huiskes R
    J Biomed Mater Res; 1995 May; 29(5):575-81. PubMed ID: 7622542
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tensile impact properties of human compact bone.
    Saha S; Hayes WC
    J Biomech; 1976; 9(4):243-51. PubMed ID: 1262359
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.