These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 7413741)

  • 1. Walking and wheelchair energetics in persons with paraplegia.
    Cerny D; Waters R; Hislop H; Perry J
    Phys Ther; 1980 Sep; 60(9):1133-9. PubMed ID: 7413741
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energy cost of paraplegic locomotion.
    Waters RL; Lunsford BR
    J Bone Joint Surg Am; 1985 Oct; 67(8):1245-50. PubMed ID: 4055849
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Energy cost of propulsion in standard and ultralight wheelchairs in people with spinal cord injuries.
    Beekman CE; Miller-Porter L; Schoneberger M
    Phys Ther; 1999 Feb; 79(2):146-58. PubMed ID: 10029055
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energy expenditure during gait using the walkabout and isocentric reciprocal gait orthoses in persons with paraplegia.
    Harvey LA; Davis GM; Smith MB; Engel S
    Arch Phys Med Rehabil; 1998 Aug; 79(8):945-9. PubMed ID: 9710167
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physiological response to the ambulatory performance of hand-rim and arm-crank propulsion systems.
    Mukherjee G; Samanta A
    J Rehabil Res Dev; 2001; 38(4):391-9. PubMed ID: 11563492
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Energy cost of walking and of wheelchair propulsion by children with myelodysplasia: comparison with normal children.
    Williams LO; Anderson AD; Campbell J; Thomas L; Feiwell E; Walker JM
    Dev Med Child Neurol; 1983 Oct; 25(5):617-24. PubMed ID: 6354800
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Filter frequency selection for manual wheelchair biomechanics.
    Cooper RA; DiGiovine CP; Boninger ML; Shimada SD; Koontz AM; Baldwin MA
    J Rehabil Res Dev; 2002; 39(3):323-36. PubMed ID: 12173753
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Power-assisted wheels ease energy costs and perceptual responses to wheelchair propulsion in persons with shoulder pain and spinal cord injury.
    Nash MS; Koppens D; van Haaren M; Sherman AL; Lippiatt JP; Lewis JE
    Arch Phys Med Rehabil; 2008 Nov; 89(11):2080-5. PubMed ID: 18996235
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energy expenditure of paraplegic patients standing and walking with two knee-ankle-foot orthoses.
    Merkel KD; Miller NE; Westbrook PR; Merritt JL
    Arch Phys Med Rehabil; 1984 Mar; 65(3):121-4. PubMed ID: 6703885
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of metabolic cost, performance, and efficiency of propulsion using an ergonomic hand drive mechanism and a conventional manual wheelchair.
    Zukowski LA; Roper JA; Shechtman O; Otzel DM; Bouwkamp J; Tillman MD
    Arch Phys Med Rehabil; 2014 Mar; 95(3):546-51. PubMed ID: 24016403
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Physiological Cost Index of walking with an isocentric reciprocating gait orthosis among patients with T(12) - L(1) spinal cord injury.
    Leung AK; Wong AF; Wong EC; Hutchins SW
    Prosthet Orthot Int; 2009 Mar; 33(1):61-8. PubMed ID: 19235067
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Paraplegic adaptation to assisted-walking: energy expenditure during wheelchair versus orthosis use.
    Merati G; Sarchi P; Ferrarin M; Pedotti A; Veicsteinas A
    Spinal Cord; 2000 Jan; 38(1):37-44. PubMed ID: 10762196
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energy expenditure in patients with low-, mid-, or high-thoracic paraplegia using Scott-Craig knee-ankle-foot orthoses.
    Merkel KD; Miller NE; Merritt JL
    Mayo Clin Proc; 1985 Mar; 60(3):165-8. PubMed ID: 3974297
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physical fitness training for wheelchair ambulation by the arm crank propulsion technique.
    Mukherjee G; Bhowmik P; Samanta A
    Clin Rehabil; 2001 Apr; 15(2):125-32. PubMed ID: 11330757
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of gait between healthy participants and persons with spinal cord injury when using the advanced reciprocating gait orthosis.
    Arazpour M; Joghtaei M; Bahramizadeh M; Ahmadi Bani M; Hutchins SW; Curran S; Mousavi ME; Sharifi G; Mardani MA
    Prosthet Orthot Int; 2016 Apr; 40(2):287-93. PubMed ID: 26195620
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of the performance of paraplegic subjects during walking with a new design of reciprocal gait orthosis.
    Karimi MT; Fatoye F
    Disabil Rehabil Assist Technol; 2016; 11(1):72-9. PubMed ID: 25069902
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of In-Hospital Walking Velocity and Level of Assistance in a Powered Exoskeleton in Persons with Spinal Cord Injury.
    Yang A; Asselin P; Knezevic S; Kornfeld S; Spungen AM
    Top Spinal Cord Inj Rehabil; 2015; 21(2):100-9. PubMed ID: 26364279
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energetics of walking and wheelchair propulsion in paraplegic patients.
    Cerny K
    Orthop Clin North Am; 1978 Apr; 9(2):370-2. PubMed ID: 662302
    [No Abstract]   [Full Text] [Related]  

  • 19. Effects of wheelchair design on metabolic and heart rate responses during propulsion by persons with paraplegia.
    Hilbers PA; White TP
    Phys Ther; 1987 Sep; 67(9):1355-8. PubMed ID: 3628489
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temporal-spatial characteristics of wheelchair propulsion. Effects of level of spinal cord injury, terrain, and propulsion rate.
    Newsam CJ; Mulroy SJ; Gronley JK; Bontrager EL; Perry J
    Am J Phys Med Rehabil; 1996; 75(4):292-9. PubMed ID: 8777025
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.