These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 741395)
1. Homage to the red queen. II. Coevolutionary response to enrichment of exploitation ecosystems. Rosenzweig ML; Schaffer WM Theor Popul Biol; 1978 Aug; 14(1):158-63. PubMed ID: 741395 [No Abstract] [Full Text] [Related]
2. Homage to the red queen. I. Coevolution of predators and their victims. Schaffer WM; Rosenzweig ML Theor Popul Biol; 1978 Aug; 14(1):135-57. PubMed ID: 741394 [No Abstract] [Full Text] [Related]
3. Evolution of a predator-prey Volterra-Lotka ecosystem with saturation effect. Hirata H Bull Math Biol; 1982; 44(5):697-704. PubMed ID: 7150818 [No Abstract] [Full Text] [Related]
4. [Strict process of stimulation of auto-oscillations in a model of the Volterra type]. Bazykin AD; Khibnik AI Biofizika; 1981; 26(5):851-3. PubMed ID: 7317468 [No Abstract] [Full Text] [Related]
5. The theory of prey-predator oscillations. Bulmer MG Theor Popul Biol; 1976 Apr; 9(2):137-50. PubMed ID: 1273797 [No Abstract] [Full Text] [Related]
6. Ecosystems with three species: one-prey-and-two-predator system in an exactly solvable model. Pande LK J Theor Biol; 1978 Oct; 74(4):591-8. PubMed ID: 732347 [No Abstract] [Full Text] [Related]
7. A qualitative method for analysis of prey-predator systems under enrichment. Assimacopoulos D; Evans FJ J Theor Biol; 1979 Oct; 80(4):467-84. PubMed ID: 542005 [No Abstract] [Full Text] [Related]
8. Predator-prey systems with group defence: the paradox of enrichment revisited. Freedman HI; Wolkowicz GS Bull Math Biol; 1986; 48(5-6):493-508. PubMed ID: 3580637 [No Abstract] [Full Text] [Related]
9. Predation, apparent competition, and the structure of prey communities. Holt RD Theor Popul Biol; 1977 Oct; 12(2):197-29. PubMed ID: 929457 [No Abstract] [Full Text] [Related]
11. Stability analysis of predator-prey models via the Liapunov method. Gatio M; Rinaldi S Bull Math Biol; 1977; 39(3):339-47. PubMed ID: 558028 [No Abstract] [Full Text] [Related]
13. On the stabilizing effect of predators and competitors on ecological communities. Hofbauer J; Sigmund K J Math Biol; 1989; 27(5):537-48. PubMed ID: 2794803 [TBL] [Abstract][Full Text] [Related]
14. On optimal diet in a patchy environment. Heller R Theor Popul Biol; 1980 Apr; 17(2):201-14. PubMed ID: 7404440 [No Abstract] [Full Text] [Related]
15. A stochastic foraging model with predator training effects: I. Functional response, switching, and run lengths. McNair JN Theor Popul Biol; 1980 Apr; 17(2):414-66. PubMed ID: 7404444 [No Abstract] [Full Text] [Related]
16. Group selection in predator-prey communities. Gilpin ME Monogr Popul Biol; 1975; (9):1-108. PubMed ID: 1160928 [No Abstract] [Full Text] [Related]
17. The effect of spatial heterogeneity on the persistence of predator-prey interactions. Hilborn R Theor Popul Biol; 1975 Dec; 8(3):346-55. PubMed ID: 1220045 [No Abstract] [Full Text] [Related]
18. Optimal foraging, the marginal value theorem. Charnov EL Theor Popul Biol; 1976 Apr; 9(2):129-36. PubMed ID: 1273796 [No Abstract] [Full Text] [Related]
19. Averaging methods in predator-prey systems and related biological models. Lin J; Kahn PB J Theor Biol; 1976 Mar; 57(1):73-102. PubMed ID: 957660 [No Abstract] [Full Text] [Related]
20. Predator-prey interactions in natural communities. Rapport DJ J Theor Biol; 1975 May; 51(1):169-80. PubMed ID: 1170465 [No Abstract] [Full Text] [Related] [Next] [New Search]