BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 741447)

  • 1. Purification and insolubilization of reptilase for the preparation of human des-AA fibrin monomers in urea.
    Brosstad F; Kierulf P; Gravem K; Godal HC
    Thromb Res; 1978 Nov; 13(5):715-23. PubMed ID: 741447
    [No Abstract]   [Full Text] [Related]  

  • 2. The release of small amounts of fibrinopeptide-B (FPB) is of critical importance for the thrombin clotting time.
    Holm B; Kierulf P; Godal HC
    Thromb Res; 1986 May; 42(4):517-26. PubMed ID: 3715815
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Clottability and cross-linking reactivity of fibrin(ogen) following differential release of fibrinopeptides A and B.
    Furlan M; Seelich T; Beck EA
    Thromb Haemost; 1976 Dec; 36(3):582-92. PubMed ID: 14415
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of reptilase and thrombin-induced changes in fibrinogen subunits by isoelectric focussing.
    Exner T; Rickard KA; Kronenberg H
    Thromb Res; 1983 Aug; 31(3):489-97. PubMed ID: 20218004
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polymerization properties of two normally circulating fibrinogens, HMW and LMW. Evidence that the COOH-terminal end of the a-chain is of importance for fibrin polymerization.
    Holm B; Brosstad F; Kierulf P; Godal HC
    Thromb Res; 1985 Sep; 39(5):595-606. PubMed ID: 4082102
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fibrinogen Copenhagen; an abnormal fibrinogen with defective polymerization and release of fibrinopeptide A, but normal adsorption of plasminogen.
    Hansen MS; Clemmensen I; Winther D
    Scand J Clin Lab Invest; 1980 May; 40(3):221-6. PubMed ID: 7444338
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crosslinking of monomeric fibrin by factor XIIIa.
    Dardik BN; Shainoff JR
    Thromb Haemost; 1979 Oct; 42(3):864-72. PubMed ID: 505402
    [No Abstract]   [Full Text] [Related]  

  • 8. Fibrinogen and the early stages of polymerization to fibrin as studied by dynamic laser light scattering.
    Larsson U; Blombäck B; Rigler R
    Biochim Biophys Acta; 1987 Sep; 915(2):172-9. PubMed ID: 3651470
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Derivatives of fibrinogen and fibrin during defibrase therapy. Separation of high and low molecular weight derivatives of fibrinogen and fibrin by agarose gel filtration.
    Asbeck F; Lechler E; Martin M; van de Loo J
    Haemostasis; 1974; 3(5-6):340-7. PubMed ID: 4468232
    [No Abstract]   [Full Text] [Related]  

  • 10. Role of fibrinopeptide B release: comparison of fibrins produced by thrombin and Ancrod.
    Shen LL; Hermans J; McDonagh J; McDonagh RP
    Am J Physiol; 1977 Jun; 232(6):H629-33. PubMed ID: 879301
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Discrepant elimination of fibrin des-AA and des-AABB in man.
    Nilsen DW; Brosstad F
    Thromb Haemost; 1986 Jun; 55(3):439. PubMed ID: 3750275
    [No Abstract]   [Full Text] [Related]  

  • 12. Fibrin polymerization studied by static and dynamic light-scattering as a function of fibrinopeptide A release.
    Wiltzius P; Dietler G; Känzig W; Häberli A; Straub PW
    Biopolymers; 1982 Nov; 21(11):2205-23. PubMed ID: 7171733
    [No Abstract]   [Full Text] [Related]  

  • 13. Fibrinogen Matsumoto V: a variant with Aalpha19 Arg-->Gly (AGG-->GGG). Comparison between fibrin polymerization stimulated by thrombin or reptilase and fibrin monomer polymerization.
    Tanaka H; Terasawa F; Ito T; Tokunaga S; Ishida F; Kitano K; Kiyosawa K; Okumura N
    Thromb Haemost; 2001 Jan; 85(1):108-13. PubMed ID: 11204560
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [EFFECT OF SNAKE VENOMS ON BLOOD COAGULATION IN VITRO].
    KORNALIK F
    Acta Univ Carol Med (Praha); 1963; 9():149-88. PubMed ID: 14166155
    [No Abstract]   [Full Text] [Related]  

  • 15. Dysfibrinogenaemia characterized by abnormal fibrin monomer polymerization and normal fibrinopeptide A release.
    Lane DA; Cuddigan B; VanRoss M; Kakkar VV
    Br J Haematol; 1980 Mar; 44(3):483-94. PubMed ID: 6769460
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of ioxaglate--an ionic low osmolar contrast medium--on fibrin polymerization in vitro.
    Brass O; Belleville J; Sabattier V; Corot C
    Blood Coagul Fibrinolysis; 1993 Oct; 4(5):689-97. PubMed ID: 8292718
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fibrin assembly after fibrinopeptide A release in model systems and human plasma studied with magnetic birefringence.
    Torbet J
    Biochem J; 1987 Jun; 244(3):633-7. PubMed ID: 3446182
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of ancrod anticoagulation. A direct proteolytic effect on fibrin.
    Pizzo SV; Schwartz ML; Hill RL; McKee PA
    J Clin Invest; 1972 Nov; 51(11):2841-50. PubMed ID: 4263497
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Kinetic study of the batroxobin-catalyzed release of fibrinopeptide A from human fibrinogen].
    Watanabe S; Ohzeki F; Mori N; Mihashi S; Baba S
    Yakugaku Zasshi; 1985 Apr; 105(4):395-400. PubMed ID: 3894618
    [No Abstract]   [Full Text] [Related]  

  • 20. [Identification and preparation of high-molecular derivatives of fibrinogen from human plasma by means of PAA-gel electrophoresis and agarose-gel chromatography].
    von Hugo R; Graeff H
    Thromb Diath Haemorrh Suppl; 1973; 55():325-37. PubMed ID: 4216114
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.