These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 7415205)

  • 41. Disposition and metabolism of [14C]-haloperidol in rats.
    Miyazaki H; Matsunaga Y; Nambu K; Oh-e Y; Yoshida K; Hashimoto M
    Arzneimittelforschung; 1986 Mar; 36(3):443-52. PubMed ID: 3707663
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The metabolic disposition of [14C]pivhydrazine, [14C]mebanazine, and [14C]benzylhydrazine in the rat.
    Bolton GC; Griffiths LA
    Drug Metab Dispos; 1979; 7(6):388-92. PubMed ID: 43225
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The role of gut micro-organisms in the metabolism of deoxynivalenol administered to rats.
    Worrell NR; Mallett AK; Cook WM; Baldwin NC; Shepherd MJ
    Xenobiotica; 1989 Jan; 19(1):25-32. PubMed ID: 2756716
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The metabolic fate of nitromide in the rat. I. Metabolism and excretion.
    Facchini V; Griffiths LA
    Xenobiotica; 1980 Apr; 10(4):289-97. PubMed ID: 7415210
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The excretion of (35S)dapsone and its metabolites in the urine, faeces and bile of the rat.
    Andoh BY; Renwick AG; Williams RT
    Xenobiotica; 1974 Sep; 4(9):571-83. PubMed ID: 4432536
    [No Abstract]   [Full Text] [Related]  

  • 46. Metabolism and excretion of butein, 2',3,4-trihydroxychalcone, 3-O-methylbutein, 4-O-methylbutein and 2',4',4-trihydroxychalcone in the rat.
    Brown S; Griffiths LA
    Xenobiotica; 1983 Nov; 13(11):669-82. PubMed ID: 6673378
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Metabolism of phenformin in the rat and guinea-pig.
    Guest D; King LJ; Parke DV
    Xenobiotica; 1979 Nov; 9(11):681-93. PubMed ID: 532218
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Ellagic acid metabolism and binding to DNA in organ explant cultures of the rat.
    Teel RW; Martin RM; Allahyari R
    Cancer Lett; 1987 Aug; 36(2):203-11. PubMed ID: 3621152
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Ellagic acid metabolism by human gut microbiota: consistent observation of three urolithin phenotypes in intervention trials, independent of food source, age, and health status.
    Tomás-Barberán FA; García-Villalba R; González-Sarrías A; Selma MV; Espín JC
    J Agric Food Chem; 2014 Jul; 62(28):6535-8. PubMed ID: 24976365
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Time course production of urolithins from ellagic acid by human gut microbiota.
    García-Villalba R; Beltrán D; Espín JC; Selma MV; Tomás-Barberán FA
    J Agric Food Chem; 2013 Sep; 61(37):8797-806. PubMed ID: 23984796
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Metabolism of myricetin and related compounds in the rat. Metabolite formation in vivo and by the intestinal microflora in vitro.
    Griffiths LA; Smith GE
    Biochem J; 1972 Nov; 130(1):141-51. PubMed ID: 4655415
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Identification of Novel Urolithin Metabolites in Human Feces and Urine after the Intake of a Pomegranate Extract.
    García-Villalba R; Selma MV; Espín JC; Tomás-Barberán FA
    J Agric Food Chem; 2019 Oct; 67(40):11099-11107. PubMed ID: 31496244
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The fate of orally and parenterally administered flavonoids in the mammal. The significance of biliary excretion.
    Griffiths LA; Barrow A
    Angiologica; 1972; 9(3-6):162-74. PubMed ID: 4669468
    [No Abstract]   [Full Text] [Related]  

  • 54. Metabolism and route of excretion of the chloro-cyclodiene HCE in the pigeon.
    Chipman JK; Walker CH
    Arch Environ Contam Toxicol; 1981 Nov; 10(6):755-64. PubMed ID: 7325694
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Excretion of benzo[a]pyrene and metabolites in urine and feces of rats: influence of route of administration, sex and long-term ethanol treatment.
    van de Wiel JA; Fijneman PH; Duijf CM; Anzion RB; Theuws JL; Bos RP
    Toxicology; 1993 Jun; 80(2-3):103-15. PubMed ID: 8327994
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Covalent binding of PCB metabolites to lipids: route of formation and characterization.
    Mörck A; Larsen G; Wehler EK
    Xenobiotica; 2002 Jul; 32(7):625-40. PubMed ID: 12162858
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Hyaluronidase inhibitory active 6H-dibenzo[b,d]pyran-6-ones from the feces of Trogopterus xanthipes.
    Jeong SJ; Kim NY; Kim DH; Kang TH; Ahn NH; Miyamoto T; Higuchi R; Kim YC
    Planta Med; 2000 Feb; 66(1):76-7. PubMed ID: 10705742
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The effects of pH and rat intestinal contents on the liberation of ellagic acid from purified and crude ellagitannins.
    Daniel EM; Ratnayake S; Kinstle T; Stoner GD
    J Nat Prod; 1991; 54(4):946-52. PubMed ID: 1791480
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Involvement of the intestinal microflora in the formation of sulphur-containing metabolites of caffeine.
    Rafter JJ; Nilsson L
    Xenobiotica; 1981 Nov; 11(11):771-8. PubMed ID: 7336758
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Routes of elimination of hexamethylmelamine and pentamethylmelamine in the rat.
    Colombo T; Broggini M; Gescher A; D'Incalci M
    Xenobiotica; 1982 May; 12(5):315-21. PubMed ID: 6814076
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.