BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 7415216)

  • 1. Enzymic formation of dehydrogenated and hydroxylated metabolites from lysergic acid diethylamide by rat liver microsomes.
    Inoue T; Niwaguchi T; Murata T
    Xenobiotica; 1980 May; 10(5):343-8. PubMed ID: 7415216
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of inducers and/or inhibitors on metabolism of lysergic acid diethylamide in rat liver microsomes.
    Inoue T; Niwaguchi T; Murata T
    Xenobiotica; 1980 Dec; 10(12):913-20. PubMed ID: 7210704
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studies on enzymatic dealkylation of D-lysergic acid diethylamide (LSD).
    Niwaguchi T; Inoue T; Nakahara Y
    Biochem Pharmacol; 1974 Mar; 23(6):1073-8. PubMed ID: 4151050
    [No Abstract]   [Full Text] [Related]  

  • 4. Metabolism of lysergic acid diethylamide (LSD) to 2-oxo-3-hydroxy LSD (O-H-LSD) in human liver microsomes and cryopreserved human hepatocytes.
    Klette KL; Anderson CJ; Poch GK; Nimrod AC; ElSohly MA
    J Anal Toxicol; 2000 Oct; 24(7):550-6. PubMed ID: 11043658
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elucidation of LSD in vitro metabolism by liquid chromatography and capillary electrophoresis coupled with tandem mass spectrometry.
    Cai J; Henion J
    J Anal Toxicol; 1996; 20(1):27-37. PubMed ID: 8837948
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential effects of 3-methylcholanthrene and phenobarbitone treatment on the oxidative metabolism of antipyrine in vitro by microsomal fractions of rat liver.
    Kahn GC; Boobis AR; Murray S; Davies DS
    Xenobiotica; 1982 Aug; 12(8):509-16. PubMed ID: 7147996
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cytochrome P450 enzymes contribute to the metabolism of LSD to nor-LSD and 2-oxo-3-hydroxy-LSD: Implications for clinical LSD use.
    Luethi D; Hoener MC; Krähenbühl S; Liechti ME; Duthaler U
    Biochem Pharmacol; 2019 Jun; 164():129-138. PubMed ID: 30981875
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Studies on the in vitro metabolism of compounds related to lysergic acid diethylamide (LSD).
    Niwaguchi T; Inoue T; Sakai T
    Biochem Pharmacol; 1974 Nov; 23(21):3063-6. PubMed ID: 4429602
    [No Abstract]   [Full Text] [Related]  

  • 9. Hyperthermic effects of D-lysergic acid diethylamide (LSD) and its derivatives in rabbits and rats.
    Hashimoto H; Hayashi M; Nakahara Y; Niwaguchi T; Ishii H
    Arch Int Pharmacodyn Ther; 1977 Aug; 228(2):314-21. PubMed ID: 303504
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Additional routes in the metabolism of phenacetin.
    Fischbach T; Lenk W
    Xenobiotica; 1985 Feb; 15(2):149-64. PubMed ID: 4002737
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of phenobarbital, dexamethasone, and 3-methylcholanthrene administration on the metabolism of 17 beta-estradiol by liver microsomes from female rats.
    Suchar LA; Chang RL; Thomas PE; Rosen RT; Lech J; Conney AH
    Endocrinology; 1996 Feb; 137(2):663-76. PubMed ID: 8593816
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biotransformation of lovastatin--III. Effect of cimetidine and famotidine on in vitro metabolism of lovastatin by rat and human liver microsomes.
    Vyas KP; Kari PH; Wang RW; Lu AY
    Biochem Pharmacol; 1990 Jan; 39(1):67-73. PubMed ID: 2297361
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biphenyl hydroxylations and spectrally apparent interactions with liver microsomes from hamsters pre-treated with phenobarbitone and 3-methylcholanthrene.
    Burke MD; Bridges JW
    Xenobiotica; 1975 Jun; 5(6):357-76. PubMed ID: 238342
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The metabolism of lysergic acid DI[14C]ethylamide ([14C]LSD) in the isolated perfused rat liver.
    Siddik ZH; Barnes RD; Dring LG; Smith RL; Williams RT
    Biochem Pharmacol; 1979 Oct; 28(20):3081-91. PubMed ID: 518707
    [No Abstract]   [Full Text] [Related]  

  • 15. A comparison of the effects of pretreatment with phenobarbitone and 3-methylcholanthrene on the metabolism of aflatoxin B1 by rat liver microsomes and isolated hepatocytes in vitro.
    Metcalfe SA; Colley PJ; Neal GE
    Chem Biol Interact; 1981 May; 35(2):145-57. PubMed ID: 6783328
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of phenobarbital and 3-methylcholanthrene induction on the formation of three glucuronide metabolites of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone, NNK.
    Murphy SE; Nunes MG; Hatala MA
    Chem Biol Interact; 1997 Mar; 103(3):153-66. PubMed ID: 9134006
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regioselectivity of hydroxylation of prostaglandins by liver microsomes supported by NADPH versus H2O2 in methylcholanthrene-treated and control rats: formation of novel prostaglandin metabolites.
    Holm KA; Engell RJ; Kupfer D
    Arch Biochem Biophys; 1985 Mar; 237(2):477-89. PubMed ID: 3856417
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Immunochemical study on the route of electron transfer from NADH and NADPH to cytochrome P-450 of liver microsomes.
    Noshiro M; Harada N; Omura T
    J Biochem; 1980 Nov; 88(5):1521-35. PubMed ID: 7462192
    [No Abstract]   [Full Text] [Related]  

  • 19. Metabolism of lysergic acid diethylamide (LSD): an update.
    Libânio Osório Marta RF
    Drug Metab Rev; 2019 Aug; 51(3):378-387. PubMed ID: 31266388
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microsomal metabolism of the carcinogen, N-2-fluorenylacetamide, by the mammary gland and liver of female rats. I. Ring- and N-hydroxylations of N-2-fluorenylacetamide.
    Malejka-Giganti D; Decker RW; Ritter CL; Polovina MR
    Carcinogenesis; 1985 Jan; 6(1):95-103. PubMed ID: 3967341
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.