BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 7415784)

  • 1. Differentiative ability of the tibial periosteum for the embryonic chick.
    Scott-Savage P; Hall BK
    Acta Anat (Basel); 1980; 106(1):129-40. PubMed ID: 7415784
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The timing of the onset of osteogenesis in the tibia of the embryonic chick.
    Scott-Savage P; Hall BK
    J Morphol; 1979 Dec; 162(3):453-63. PubMed ID: 529294
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isolation and characterization of osteogenic cells derived from first bone of the embryonic tibia.
    Syftestad GT; Weitzhandler M; Caplan AI
    Dev Biol; 1985 Aug; 110(2):275-83. PubMed ID: 4018399
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differentiation of osteoid-producing cells in vitro: possible evidence for the requirement of a microenvironment.
    Tenenbaum HC; Heersche JN
    Calcif Tissue Int; 1986 May; 38(5):262-7. PubMed ID: 3087598
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Clonal distribution of osteoprogenitor cells in cultured chick periostea: functional relationship to bone formation.
    McCulloch CA; Fair CA; Tenenbaum HC; Limeback H; Homareau R
    Dev Biol; 1990 Aug; 140(2):352-61. PubMed ID: 2373258
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Appearance of osteoclasts and osteoblasts in electrically stimulated bones cultured on chorioallantoic membranes.
    Noda M; Sato A
    Clin Orthop Relat Res; 1985 Mar; (193):288-98. PubMed ID: 3971633
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of age on the response of rabbit periosteal osteoprogenitor cells to exogenous transforming growth factor-beta 2.
    Critchlow MA; Bland YS; Ashhurst DE
    J Cell Sci; 1994 Feb; 107 ( Pt 2)():499-516. PubMed ID: 8207075
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Research on the inductive relation between chondrocytes and periosteum in embryonic chick tibia].
    Mareel M
    Arch Biol (Liege); 1967; 78(2):145-66. PubMed ID: 5613323
    [No Abstract]   [Full Text] [Related]  

  • 9. Cellular origin of endochondral ossification from grafted periosteum.
    Ueno T; Kagawa T; Mizukawa N; Nakamura H; Sugahara T; Yamamoto T
    Anat Rec; 2001 Dec; 264(4):348-57. PubMed ID: 11745090
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lack of association between avian cartilages of different embryological origins when maintained in vitro.
    Fyfe DM; Hall BK
    Am J Anat; 1979 Apr; 154(4):485-96. PubMed ID: 433793
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Periosteal thickness and cellularity in mid-diaphyseal cross-sections from human femora and tibiae of aged donors.
    Moore SR; Milz S; Knothe Tate ML
    J Anat; 2014 Feb; 224(2):142-9. PubMed ID: 24175932
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Osteogenic cell lineage analysis is facilitated by organ cultures of embryonic chick periosteum.
    Bruder SP; Caplan AI
    Dev Biol; 1990 Oct; 141(2):319-29. PubMed ID: 2210040
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The influence of stress and strain in the early development of shaft bones. An experimental study on the chick embryo tibia.
    Amprino R
    Anat Embryol (Berl); 1985; 172(1):49-60. PubMed ID: 4037372
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro differentiation potential of the periosteal cells from a membrane bone, the quadratojugal of the embryonic chick.
    Fang J; Hall BK
    Dev Biol; 1996 Dec; 180(2):701-12. PubMed ID: 8954738
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A light and electron microscopic study of the limb long bones perichondral ossification in the quail embryo (Coturnix coturnix japonica).
    Pourlis AF; Antonopoulos J; Magras IN
    Ital J Anat Embryol; 2006; 111(3):159-70. PubMed ID: 17312922
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro comparison of equine cancellous bone graft donor sites and tibial periosteum as sources of viable osteoprogenitors.
    McDuffee LA; Anderson GI
    Vet Surg; 2003; 32(5):455-63. PubMed ID: 14569574
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of endochondral cartilage growth in the developing avian limb: cooperative involvement of perichondrium and periosteum.
    Di Nino DL; Long F; Linsenmayer TF
    Dev Biol; 2001 Dec; 240(2):433-42. PubMed ID: 11784074
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chondrocyte-to-osteocyte transformation in grafts of perichondrium-free epiphyseal cartilage.
    Kahn AJ; Simmons DJ
    Clin Orthop Relat Res; 1977; (129):299-304. PubMed ID: 608290
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Syndecan-3, tenascin-C, and the development of cartilaginous skeletal elements and joints in chick limbs.
    Koyama E; Leatherman JL; Shimazu A; Nah HD; Pacifici M
    Dev Dyn; 1995 Jun; 203(2):152-62. PubMed ID: 7544653
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of hypertrophic cartilage in endochondral ossification.
    Navagiri SS; Dubey PN
    Z Mikrosk Anat Forsch; 1976; 90(3):435-46. PubMed ID: 1031507
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.