BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 7417421)

  • 1. Evidence for allosteric inhibition sites in the glucose carrier of erythrocytes.
    Krupka RM; Devés R
    Biochim Biophys Acta; 1980 May; 598(1):127-33. PubMed ID: 7417421
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Testing transport systems for competition between pairs of reversible inhibitors. Inhibition of erythrocyte glucose transport by cytochalasin B and steroids.
    Devés R; Krupka RM
    J Biol Chem; 1980 Dec; 255(24):11870-4. PubMed ID: 7440574
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Asymmetric binding of steroids to internal and external sites in the glucose carrier of erythrocytes.
    Krupka RM; Devés R
    Biochim Biophys Acta; 1980 May; 598(1):134-44. PubMed ID: 7417422
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reaction of the glucose carrier of erythrocytes with sodium tetrathionate: evidence for inward-facing and outward-facing carrier conformations.
    Krupka RM
    J Membr Biol; 1985; 84(1):35-43. PubMed ID: 4039759
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cytochalasin B and the kinetics of inhibition of biological transport: a case of asymmetric binding to the glucose carrier.
    Devés R; Krupka RM
    Biochim Biophys Acta; 1978 Jul; 510(2):339-48. PubMed ID: 667049
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Asymmetrical binding of phloretin to the glucose transport system of human erythrocytes.
    Krupka RM
    J Membr Biol; 1985; 83(1-2):71-80. PubMed ID: 4039758
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Looking for probes of gated channels: studies of the inhibition of glucose and choline transport in erythrocytes.
    Krupka RM; Devés R
    Biochem Cell Biol; 1986 Nov; 64(11):1099-107. PubMed ID: 2435306
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence for two asymmetric conformational states in the human erythrocyte sugar-transport system.
    Barnett JE; Holman GD; Chalkley RA; Munday KA
    Biochem J; 1975 Mar; 145(3):417-29. PubMed ID: 1156368
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An experimental test for cyclic versus linear transport models. The mechanisms of glucose and choline transport in erythrocytes.
    Krupka RM; Devés R
    J Biol Chem; 1981 Jun; 256(11):5410-6. PubMed ID: 7240146
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cytochalasin B binding sites and glucose transport carrier in human erythrocyte ghosts.
    Jung CY; Rampal AL
    J Biol Chem; 1977 Aug; 252(15):5456-63. PubMed ID: 885863
    [No Abstract]   [Full Text] [Related]  

  • 11. Evidence for a two-state mobile carrier mechanism in erythrocyte choline transport: effects of substrate analogs on inactivation of the carrier by N-ethylmaleimide.
    Devés R; Krupka RM
    J Membr Biol; 1981; 61(1):21-30. PubMed ID: 7265181
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cytochalasin B-binding proteins in rabbit erythrocyte membranes and their post-natal change in relation to the glucose carrier activity.
    Jung CY; Pinkofsky HB; Cowden MW
    Biochim Biophys Acta; 1980 Mar; 597(1):145-54. PubMed ID: 7370240
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reversible association of cytochalasin B with the human erythrocyte membrane. Inhibition of glucose transport and the stoichiometry of cytochalasin binding.
    Taverna RD; Langdon RG
    Biochim Biophys Acta; 1973 Oct; 323(2):207-19. PubMed ID: 4752283
    [No Abstract]   [Full Text] [Related]  

  • 14. Reaction of an exofacial sulfhydryl group on the erythrocyte hexose carrier with an impermeant maleimide. Relevance to the mechanism of hexose transport.
    May JM
    J Biol Chem; 1988 Sep; 263(27):13635-40. PubMed ID: 3417676
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cytochalasin B binding to Ehrlich ascites tumor cells and its relationship to glucose carrier.
    Cuppoletti J; Mayhew E; Jung CY
    Biochim Biophys Acta; 1981 Apr; 642(2):392-404. PubMed ID: 7284364
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reaction of the glucose carrier in erythrocytes with halodinitrobenzenes.
    Krupka RM; Devés R
    J Biol Chem; 1980 Mar; 255(5):2051-5. PubMed ID: 7354076
    [No Abstract]   [Full Text] [Related]  

  • 17. Asymmetry of the hexose transfer system in human erythrocytes. Comparison of the effects of cytochalasin B, phloretin and maltose as competitive inhibitors.
    Basketter DA; Widdas WF
    J Physiol; 1978 May; 278():389-401. PubMed ID: 671319
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glucose transport inhibitors protect against 1,2-cyclohexanedione-produced potassium loss from human red blood cells.
    Baker GF; O'Gorman R; Baker P
    Exp Physiol; 1998 Mar; 83(2):239-42. PubMed ID: 9568484
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of glucose transport in the human erythrocyte by cytochalasin B.
    Bloch R
    Biochemistry; 1973 Nov; 12(23):4799-801. PubMed ID: 4773858
    [No Abstract]   [Full Text] [Related]  

  • 20. Phloretinyl-3'-benzylazide: a high affinity probe for the sugar transporter in human erythrocytes. I. Hexose transport inhibition and photolabeling of mutarotase.
    Fannin FF; Evans JO; Gibbs EM; Diedrich DF
    Biochim Biophys Acta; 1981 Dec; 649(2):189-201. PubMed ID: 7198487
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.