These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 7417422)
1. Asymmetric binding of steroids to internal and external sites in the glucose carrier of erythrocytes. Krupka RM; Devés R Biochim Biophys Acta; 1980 May; 598(1):134-44. PubMed ID: 7417422 [TBL] [Abstract][Full Text] [Related]
2. Evidence for allosteric inhibition sites in the glucose carrier of erythrocytes. Krupka RM; Devés R Biochim Biophys Acta; 1980 May; 598(1):127-33. PubMed ID: 7417421 [TBL] [Abstract][Full Text] [Related]
3. Cytochalasin B and the kinetics of inhibition of biological transport: a case of asymmetric binding to the glucose carrier. Devés R; Krupka RM Biochim Biophys Acta; 1978 Jul; 510(2):339-48. PubMed ID: 667049 [TBL] [Abstract][Full Text] [Related]
4. Testing transport systems for competition between pairs of reversible inhibitors. Inhibition of erythrocyte glucose transport by cytochalasin B and steroids. Devés R; Krupka RM J Biol Chem; 1980 Dec; 255(24):11870-4. PubMed ID: 7440574 [TBL] [Abstract][Full Text] [Related]
5. Interaction of steroids with the transport system of glucose in human erythrocytes. Lacko L; Wittke B; Geck P J Cell Physiol; 1975 Dec; 86 Suppl 2(3 Pt 2):673-80. PubMed ID: 1202039 [TBL] [Abstract][Full Text] [Related]
6. Cytochalasin B binding sites and glucose transport carrier in human erythrocyte ghosts. Jung CY; Rampal AL J Biol Chem; 1977 Aug; 252(15):5456-63. PubMed ID: 885863 [No Abstract] [Full Text] [Related]
7. Equilibria and kinetics of ligand binding to the human erythrocyte glucose transporter. Evidence for an alternating conformation model for transport. Gorga FR; Lienhard GE Biochemistry; 1981 Sep; 20(18):5108-13. PubMed ID: 7295669 [TBL] [Abstract][Full Text] [Related]
8. A model for the action of the anion exchange protein of the red blood cell. Rothstein A; Knauf PA; Grinstein S; Shami Y Prog Clin Biol Res; 1979; 30():483-96. PubMed ID: 531039 [TBL] [Abstract][Full Text] [Related]
9. Asymmetric or symmetric? Cytosolic modulation of human erythrocyte hexose transfer. Carruthers A; Melchior DL Biochim Biophys Acta; 1983 Feb; 728(2):254-66. PubMed ID: 6681982 [TBL] [Abstract][Full Text] [Related]
10. An experimental test for cyclic versus linear transport models. The mechanisms of glucose and choline transport in erythrocytes. Krupka RM; Devés R J Biol Chem; 1981 Jun; 256(11):5410-6. PubMed ID: 7240146 [TBL] [Abstract][Full Text] [Related]
11. Asymmetrical binding of phloretin to the glucose transport system of human erythrocytes. Krupka RM J Membr Biol; 1985; 83(1-2):71-80. PubMed ID: 4039758 [TBL] [Abstract][Full Text] [Related]
12. Phloretinyl-3'-benzylazide: a high affinity probe for the sugar transporter in human erythrocytes. I. Hexose transport inhibition and photolabeling of mutarotase. Fannin FF; Evans JO; Gibbs EM; Diedrich DF Biochim Biophys Acta; 1981 Dec; 649(2):189-201. PubMed ID: 7198487 [TBL] [Abstract][Full Text] [Related]
13. The competitive inhibition of glucose transport in human erythrocytes by compounds of different structures. Lacko L; Wittke B Biochem Pharmacol; 1982 May; 31(10):1925-9. PubMed ID: 7104025 [TBL] [Abstract][Full Text] [Related]
14. Apparent noncompetitive inhibition of choline transport in erythrocytes by inhibitors bound at the substrate site. Devés R; Krupka RM J Membr Biol; 1983; 74(3):183-9. PubMed ID: 6887231 [TBL] [Abstract][Full Text] [Related]
15. Cytochalasin B-binding proteins in rabbit erythrocyte membranes and their post-natal change in relation to the glucose carrier activity. Jung CY; Pinkofsky HB; Cowden MW Biochim Biophys Acta; 1980 Mar; 597(1):145-54. PubMed ID: 7370240 [TBL] [Abstract][Full Text] [Related]
16. Asymmetry of the chloride transport system in human erythrocyte ghosts. Schnell KF; Besl E; Manz A Pflugers Arch; 1978 Jun; 375(1):87-95. PubMed ID: 567343 [TBL] [Abstract][Full Text] [Related]
17. Maltosyl isothiocyanate: an affinity label for the glucose transporter of the human erythrocyte membrane. 1. Inhibition of glucose transport. Mullins RE; Langdon RG Biochemistry; 1980 Mar; 19(6):1199-205. PubMed ID: 7189410 [TBL] [Abstract][Full Text] [Related]
18. Differential perturbation of erythrocyte membrane-associated transport and enzyme activities by structurally related lipophilic compounds. Aberlin ME; Litman GW Biochim Biophys Acta; 1979 May; 553(1):96-106. PubMed ID: 110344 [TBL] [Abstract][Full Text] [Related]
19. Polyol permeability of the human red cell. Interpretation of glucose transport in terms of a pore. Bowman RJ; Lwitt DG Biochim Biophys Acta; 1977 Apr; 466(1):68-83. PubMed ID: 856270 [TBL] [Abstract][Full Text] [Related]
20. Looking for probes of gated channels: studies of the inhibition of glucose and choline transport in erythrocytes. Krupka RM; Devés R Biochem Cell Biol; 1986 Nov; 64(11):1099-107. PubMed ID: 2435306 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]