These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

69 related articles for article (PubMed ID: 7417470)

  • 1. Phospholipid composition and heat sensitivity in a thermophilic bacterium.
    Merkel GJ; Perry JJ
    Biochim Biophys Acta; 1980 Jul; 619(1):68-75. PubMed ID: 7417470
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of growth substrate on thermal death of thermophilic bacteria.
    Merkel GJ; Perry JJ
    Appl Environ Microbiol; 1977 Dec; 34(6):626-9. PubMed ID: 596868
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lipids and fatty acids of a moderately halophilic bacterium, No. 101.
    Ohno Y; Yano I; Hiramatsu T; Masui M
    Biochim Biophys Acta; 1976 Mar; 424(3):337-50. PubMed ID: 1259964
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phospholipid and fatty acid composition of methanol-utilizing bacteria.
    Goldberg I; Jensen AP
    J Bacteriol; 1977 Apr; 130(1):535-7. PubMed ID: 856788
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of growth temperature on the thermotropic behavior of the membranes of a thermophilic Bacillus. Composition-structure-function relationships.
    Reizer J; Grossowicz N; Barenholz Y
    Biochim Biophys Acta; 1985 May; 815(2):268-80. PubMed ID: 3995029
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fatty acid and phospholipid composition of five psychrotrophic Pseudomonas spp. grown at different temperatures.
    Bhakoo M; Herbert RA
    Arch Microbiol; 1980 May; 126(1):51-5. PubMed ID: 7396638
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polyunsaturated fatty acids in the psychrophilic bacterium Shewanella gelidimarina ACAM 456T: molecular species analysis of major phospholipids and biosynthesis of eicosapentaenoic acid.
    Nichols DS; Nichols PD; Russell NJ; Davies NW; McMeekin TA
    Biochim Biophys Acta; 1997 Aug; 1347(2-3):164-76. PubMed ID: 9295160
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fatty acid and phospholipid selectivity of different phospholipase A2 enzymes studied by using a mammalian membrane as substrate.
    Diez E; Chilton FH; Stroup G; Mayer RJ; Winkler JD; Fonteh AN
    Biochem J; 1994 Aug; 301 ( Pt 3)(Pt 3):721-6. PubMed ID: 8053897
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ESR studies on the membrane properties of a moderately halophilic bacterium. II. Effect of extreme growth conditions on liposome properties.
    Hara H; Hyono A; Kuriyama S; Yano I; Masui M
    J Biochem; 1980 Nov; 88(5):1275-82. PubMed ID: 6257662
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lipids of dermatophytes II. Effect of growth condition on the lipid composition and membrane transport of Microsporum gypseum.
    Larroya S; Khuller GK
    Lipids; 1985 Jan; 20(1):11-5. PubMed ID: 3918228
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lipid and fatty acid composition of cytoplasmic membranes from Streptomyces hygroscopicus and its stable protoplast-type L form.
    Hoischen C; Gura K; Luge C; Gumpert J
    J Bacteriol; 1997 Jun; 179(11):3430-6. PubMed ID: 9171384
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The growth of Mycobacterium convolutum on solid n-alkane substrates: effect on cellular lipid composition.
    Hallas LE; Vestal JR
    Can J Microbiol; 1978 Oct; 24(10):1197-203. PubMed ID: 728850
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of temperature on the composition and physical properties of the lipids of Pseudomonas fluorescens.
    Cullen J; Phillips MC; Shipley GG
    Biochem J; 1971 Dec; 125(3):733-42. PubMed ID: 5004336
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Properties of spin labelled membranes of Fusarium oxysporum f. sp. lycopersici.
    Miller RW; De La Roche IA
    Biochim Biophys Acta; 1976 Aug; 443(1):64-80. PubMed ID: 182261
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The impact of abiotic factors (temperature and glucose) on physicochemical properties of lipids from Yersinia pseudotuberculosis.
    Bakholdina SI; Sanina NM; Krasikova IN; Popova OB; Solov'eva TF
    Biochimie; 2004 Dec; 86(12):875-81. PubMed ID: 15667937
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heat shock response of thermophilic fungi: membrane lipids and soluble carbohydrates under elevated temperatures.
    Ianutsevich EA; Danilova OA; Groza NV; Kotlova ER; Tereshina VM
    Microbiology (Reading); 2016 Jun; 162(6):989-999. PubMed ID: 26978457
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of fatty acid synthesis in Escherichia coli in the absence of phospholipid synthesis and release of inhibition by thioesterase action.
    Jiang P; Cronan JE
    J Bacteriol; 1994 May; 176(10):2814-21. PubMed ID: 7910602
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of temperature on the lipid and fatty acid composition of Yersinia pseudotuberculosis.
    Salamah AA; Ali MA
    New Microbiol; 1995 Jan; 18(1):27-33. PubMed ID: 7760754
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The biogenesis of mitochondria. 3. The lipid composition of aerobically and anaerobically grown Saccharomyces cerevisiae as related to the membrane systems of the cells.
    Jollow D; Kellerman GM; Linnane AW
    J Cell Biol; 1968 May; 37(2):221-30. PubMed ID: 4297785
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of elevated growth temperature and heat shock on the lipid composition of the inner and outer membranes of Yersinia pseudotuberculosis.
    Davydova L; Bakholdina S; Barkina M; Velansky P; Bogdanov M; Sanina N
    Biochimie; 2016 Apr; 123():103-9. PubMed ID: 26853818
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.